記事一覧

条件に一致する記事の数: 3953件

記事一覧へ

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80]
Date(投稿日時):Subject(見出し):From(投稿者):
27932009/05/12Re: H $B$, (BG $B$N@55,ItJ,72$G (Bm:=[G:H] $B$J$i"O (Ba $B": (BG $B$KBP$7$F (B,a^m $B": (BHkyokoyoshida123@gmail.com
27922009/05/12Re: m^*_ $B&A$O (BHausdorff $B30B,EY$H$9$k!#"O (Br>0 $B$KBP$7$F (B,m^*_ $B&A (B(rE)=r^ $B&A (Bm^*_ $B&A (B(E)?kyokoyoshida123@gmail.com
27912009/05/12Re: S $B$, (Bsimilarity $B$J$i (BS $B$O@~J,$r@~J,$X<L$9;v$r<($; (Bkyokoyoshida123@gmail.com
27902009/05/12Re: $B&5$, (BC^ $B5i (B, $BA4C1<M$J (BO $B"* (BO' $B$J<LA|$N;~ (B,E $B$, (BLebesgue $B2DB,$J$i&5 (B(E) $B$b (BLebesgue $B2DB,$G$"$k (Bkyokoyoshida123@gmail.com
27892009/05/11Re: Rを実数体.R[x]/<x^2+x+1>は体になる事を示せ, この環は何に環同型?chiaki@kit.ac.jp (Tsukamoto Chiaki)
27882009/05/11Re: ΦがC^級,全単射なO→O'な写像の時,EがLebesgue可測ならΦ(E)もLebesgue可測であるchiaki@kit.ac.jp (Tsukamoto Chiaki)
27872009/05/11Re: f(x):=x^2+x+1∈Z_p[x]の時,Z_p/(f(x))の構造を決定せよはchiaki@kit.ac.jp (Tsukamoto Chiaki)
27862009/05/11Re: SがsimilarityならSは線分を線分へ写す事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
27852009/05/11Re: S $B$, (Bsimilarity $B$J$i (BS $B$O@~J,$r@~J,$X<L$9;v$r<($; (Bkyokoyoshida123@gmail.com
27842009/05/11Re: $B&R (B=(26)(35), $B&C (B=(13)(45) $B": (BS_6:6 $B<!BP>N72$G=d2s72 (B< $B&R&S (B> $B$O (BS_6 $B$N@55,ItJ,72 (B? < $B&R&S (B> $B$N1&N`$NBg$-$5$r5a$a$h (Bkyokoyoshida123@gmail.com
27832009/05/11Re: R $B$r<B?tBN (B.R[x]/<x^2+x+1> $B$OBN$K$J$k;v$r<($; (B, $B$3$N4D$O2?$K4DF17? (B?kyokoyoshida123@gmail.com
27822009/05/11Re: 2 $B$D??ItJ,72$NOB=89g$G$"$k$h$&$J72$OB8:_$7$J$$ (Bkyokoyoshida123@gmail.com
27812009/05/11Re: Z_m $B$N6KBg%$%G%"%k$HAG%$%G%"%k$r5a$a$h (Bkyokoyoshida123@gmail.com
27802009/05/11Re: f(x):=x^2+x+1 $B": (BZ_p[x] $B$N;~ (B,Z_p/(f(x)) $B$N9=B$$r7hDj$;$h$O (Bkyokoyoshida123@gmail.com
27792009/05/11Re: $B&5$, (BC^ $B5i (B, $BA4C1<M$J (BO $B"* (BO' $B$J<LA|$N;~ (B,E $B$, (BLebesgue $B2DB,$J$i&5 (B(E) $B$b (BLebesgue $B2DB,$G$"$k (Bkyokoyoshida123@gmail.com
27782009/05/10Re: Koch $B6J@~$rD4$Y$F$$$F4v$D$+<ALd$,$"$j$^$9 (Bkyokoyoshida123@gmail.com
27772009/05/10Re: Koch $B6J@~$rD4$Y$F$$$F4v$D$+<ALd$,$"$j$^$9 (Bkyokoyoshida123@gmail.com
27762009/05/09Re: SがsimilarityならSは線分を線分へ写す事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
27752009/05/09Re: ΦがC^級,全単射なO→O'な写像の時,EがLebesgue可測ならΦ(E)もLebesgue可測であるchiaki@kit.ac.jp (Tsukamoto Chiaki)
27742009/05/09Re: f(x)=x^k(k $B$O<+A3?t (B) $B$G (Bm_ $B&A (B(E)=0 $B"M (Bm_ $B&A (B(f(E))=0 $B$J$i (Bdim(E)=dimf(E) $B$r<($; (Bkyokoyoshida123@gmail.com
27732009/05/09Re: singlar $B$H (Babsoultely continuous $B$K$D$$$F$N??56H=Dj (Bkyokoyoshida123@gmail.com
27722009/05/09Re: S $B$, (Bsimilarity $B$J$i (BS $B$O@~J,$r@~J,$X<L$9;v$r<($; (Bkyokoyoshida123@gmail.com
27712009/05/09Re: $B&5$, (BC^ $B5i (B, $BA4C1<M$J (BO $B"* (BO' $B$J<LA|$N;~ (B,E $B$, (BLebesgue $B2DB,$J$i&5 (B(E) $B$b (BLebesgue $B2DB,$G$"$k (Bkyokoyoshida123@gmail.com
27702009/05/07Re: 2つ真部分群の和集合であるような群は存在しないchiaki@kit.ac.jp (Tsukamoto Chiaki)
27692009/05/07Re: Rを実数体.R[x]/<x^2+x+1>は体になる事を示せ, この環は何に環同型?chiaki@kit.ac.jp (Tsukamoto Chiaki)
27682009/05/07Re: σ=(26)(35),γ=(13)(45)∈S_6:6次対称群で巡回群<στ>はS_6の正規部分群? <στ>の右類の大きさを求めよchiaki@kit.ac.jp (Tsukamoto Chiaki)
27672009/05/07Re: HがGの正規部分群でm:=[G:H]なら∀a∈Gに対して,a^m∈Hchiaki@kit.ac.jp (Tsukamoto Chiaki)
27662009/05/07Re: ν_*をLebesgue外測度とすると{E;for∀A⊂X,ν_*(A)=ν_*(E∩A)+ν_*(E∩A^c)}は開集合ら含む最小のσ集合体?chiaki@kit.ac.jp (Tsukamoto Chiaki)
27652009/05/07Re: 有限測度空間でf,f_n:X→[-∞,∞],n=1,2,…,可測の時,f_n→f a.e.で |f_n|≦1なら∫f_n→∫fで反例f_n(x)=sinxは使えない?chiaki@kit.ac.jp (Tsukamoto Chiaki)
27642009/05/07Re: m^*_αはHausdorff外測度とする。∀r>0に対して,m^*_α(rE)=r^αm^*_α(E)?chiaki@kit.ac.jp (Tsukamoto Chiaki)
27632009/05/07Re: Hausdorff次元dimF=αならFはm_α-可測? fがm_α可測なら∫_F f(x)dm_α<∞?chiaki@kit.ac.jp (Tsukamoto Chiaki)
27622009/05/07Re: 曲線z:[a,b]→R^dがquasi-simple⇔Z={z(t);a≦t≦b}はHausdorff次元1chiaki@kit.ac.jp (Tsukamoto Chiaki)
27612009/05/07Re: Sierpinski triangleはどうしてself-similar?chiaki@kit.ac.jp (Tsukamoto Chiaki)
27602009/05/072つ真部分群の和集合であるような群は存在しないkyokoyoshida123@gmail.com
27592009/05/07Rを実数体.R[x]/<x^2+x+1>は体になる事を示せ, この環は何に環同型?kyokoyoshida123@gmail.com
27582009/05/07σ=(26)(35),γ=(13)(45)∈S_6:6次対称群で巡回群<στ>はS_6の正規部分群? <στ>の右類の大きさを求めよkyokoyoshida123@gmail.com
27572009/05/07HがGの正規部分群でm:=[G:H]なら∀a∈Gに対して,a^m∈Hkyokoyoshida123@gmail.com
27562009/05/07ν_*をLebesgue外測度とすると{E;for∀A⊂X,ν_*(A)=ν_*(E∩A)+ν_*(E∩A^c)}は開集合ら含む最小のσ集合体?kyokoyoshida123@gmail.com
27552009/05/07有限測度空間でf,f_n:X→[-∞,∞],n=1,2,…,可測の時,f_n→f a.e.で |f_n|≦1なら∫f_n→∫fで反例f_n(x)=sinxは使えない?kyokoyoshida123@gmail.com
27542009/05/07m^*_αはHausdorff外測度とする。∀r>0に対して,m^*_α(rE)=r^αm^*_α(E)?kyokoyoshida123@gmail.com
27532009/05/06Hausdorff次元dimF=αならFはm_α-可測? fがm_α可測なら∫_F f(x)dm_α<∞?kyokoyoshida123@gmail.com
27522009/05/06曲線z:[a,b]→R^dがquasi-simple⇔Z={z(t);a≦t≦b}はHausdorff次元1kyokoyoshida123@gmail.com
27512009/05/06Sierpinski triangleはどうしてself-similar?kyokoyoshida123@gmail.com
27502009/05/05Re: singlarとabsoultely continuousについての真偽判定chiaki@kit.ac.jp (Tsukamoto Chiaki)
27492009/05/05Re: Z_mの極大イデアルと素イデアルを求めよchiaki@kit.ac.jp (Tsukamoto Chiaki)
27482009/05/05Re: f(x)=x^k(kは自然数)でm_α(E)=0⇒m_α(f(E))=0 ならdim(E)=dimf(E)を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
27472009/05/05Re: E $B$r3+5e$GJ$$C$FDj5A$7$?30B,EY$H (BLebesgue $B30B,EY$H$,Ey$7$/$J$k;v$N>ZL@ (Bkyokoyoshida123@gmail.com
27462009/05/05Re: Sierphinski triangle $B$O&A (B=ln3/ln2 $B$N (BHaursdorff $B<!85$r;}$D;v<($; (Bkyokoyoshida123@gmail.com
27452009/05/05Re: B $B$r$"$k (Bl $B!e (Bk $B$K$D$$$F (B2^-l $B!e (BdiamB<2^{-l+1} $B$rK~B-$9$kHoJ$ (BB~ $BFb$N5e$H$9$k$H (B,B $B$O9b!9 (Bc3^{k-l} $B8D$N (Bk $B@$Be$ND:E@$r4^$` (Bkyokoyoshida123@gmail.com
27442009/05/05Re: singlar $B$H (Babsoultely continuous $B$K$D$$$F$N??56H=Dj (Bkyokoyoshida123@gmail.com

Fnews-list 1.9(20180406) -- by Mizuno, MWE <mwe@ccsf.jp>
GnuPG Key ID = ECC8A735
GnuPG Key fingerprint = 9BE6 B9E9 55A5 A499 CD51 946E 9BDC 7870 ECC8 A735