記事一覧

条件に一致する記事の数: 3953件

記事一覧へ

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80]
Date(投稿日時):Subject(見出し):From(投稿者):
29602009/07/23Re: A={z $B": (BC;-1 $B!e (BRe(z) $B!e (B1 and 0<Im(z)< $B&P (B/2} $B$N;~ (B, $B<!$NHO0O$rIA$1 (BKyokoYoshida <kyokoyoshida123@gmail.com>
29592009/07/23Re: $B<!$NJ#AG4X?t$NHyJ,2DG=@-$rD4$Y2DG=$J$iF34X?t$b5a$a$h!#$^$? (Bentire $B$J$N$O$I$l$+ (B?KyokoYoshida <kyokoyoshida123@gmail.com>
29582009/07/22Re: u(x,y)=arctan(y/x) $B$,D4OB4X?t$N;~ (B,f(z) $B$r (Bx+iy $B$H (Bz $B$N;~$H$G7hDj$;$h (BKyokoYoshida <kyokoyoshida123@gmail.com>
29572009/07/22Re: Res_{z= $B&P (Bi}(z-sinh(z))/(z^2sinh (z))=i/ $B&P (BKyokoYoshida <kyokoyoshida123@gmail.com>
29562009/07/21Re: M $B$r@~7A??ItJ,6u4V$H$7 (B,P_m $B$r (BM $B$X$ND>8r<M1F$H$9$k;~ (B,P_m $B$N8GM-CM$r5a$a$h (BKyokoYoshida <kyokoyoshida123@gmail.com>
29552009/07/21Re: $B<+8J?oH<<LA| (BA $B$, (BA= $B&2 (B_{j=1}^r $B&A (B_j E_j $B$H (Bspectral $BJ,2t$5$l$k$J$i (B, $B&A (B_j $B$OAj0[$J$k8GM-CM$K$J$k;v$r<($; (BKyokoYoshida <kyokoyoshida123@gmail.com>
29542009/07/20Re: A={z∈C;-1≦Re(z)≦1 and 0<Im(z)<π/2}の時,次の範囲を描けchiaki@kit.ac.jp (Tsukamoto Chiaki)
29532009/07/20Re: 自己随伴写像AがA=Σ_{j=1}^r α_j E_jとspectral分塊されるなら,α_jは相異なる固有値になる事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
29522009/07/20Re: u(x,y)=arctan(y/x)が調和関数の時,f(z)をx+iyとzの時とで決定せよchiaki@kit.ac.jp (Tsukamoto Chiaki)
29512009/07/20Re: A={z $B": (BC;-1 $B!e (BRe(z) $B!e (B1 and 0<Im(z)< $B&P (B/2} $B$N;~ (B, $B<!$NHO0O$rIA$1 (BKyokoYoshida <kyokoyoshida123@gmail.com>
29502009/07/20Re: u(x,y)=arctan(y/x) $B$,D4OB4X?t$N;~ (B,f(z) $B$r (Bx+iy $B$H (Bz $B$N;~$H$G7hDj$;$h (BKyokoYoshida <kyokoyoshida123@gmail.com>
29492009/07/20Re: $B<+8J?oH<<LA| (BA $B$, (BA= $B&2 (B_{j=1}^r $B&A (B_j E_j $B$H (Bspectral $BJ,2t$5$l$k$J$i (B, $B&A (B_j $B$OAj0[$J$k8GM-CM$K$J$k;v$r<($; (BKyokoYoshida <kyokoyoshida123@gmail.com>
29482009/07/20Re: 自己随伴写像AがA=Σ_{j=1}^r α_j E_jとspectral分塊されるなら,α_jは相異なる固有値になる事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
29472009/07/20Re: Mを線形真部分空間とし,P_mをMへの直交射影とする時,P_mの固有値を求めよchiaki@kit.ac.jp (Tsukamoto Chiaki)
29462009/07/19Re: $B<+8J?oH<<LA| (BA $B$, (BA= $B&2 (B_{j=1}^r $B&A (B_j E_j $B$H (Bspectral $BJ,2t$5$l$k$J$i (B, $B&A (B_j $B$OAj0[$J$k8GM-CM$K$J$k;v$r<($; (BKyokoYoshida <kyokoyoshida123@gmail.com>
29452009/07/19Mを線形真部分空間とし,P_mをMへの直交射影とする時,P_mの固有値を求めよKyokoYoshida <kyokoyoshida123@gmail.com>
29442009/07/18Re: Res_{z=πi}(z-sinh(z))/(z^2sinh (z))=i/πchiaki@kit.ac.jp (Tsukamoto Chiaki)
29432009/07/18Re: A={z∈C;-1≦Re(z)≦1 and 0<Im(z)<π/2}の時,次の範囲を描けchiaki@kit.ac.jp (Tsukamoto Chiaki)
29422009/07/18Re: u(x,y)=arctan(y/x)が調和関数の時,f(z)をx+iyとzの時とで決定せよchiaki@kit.ac.jp (Tsukamoto Chiaki)
29412009/07/18Res_{z=πi}(z-sinh(z))/(z^2sinh(z))=i/πKyokoYoshida <kyokoyoshida123@gmail.com>
29402009/07/18A={z∈C;-1≦Re(z)≦1 and 0<Im(z)<π/2}の時,次の範囲を描けKyokoYoshida <kyokoyoshida123@gmail.com>
29392009/07/18Re: u(x,y)=arctan(y/x) $B$,D4OB4X?t$N;~ (B,f(z) $B$r (Bx+iy $B$H (Bz $B$N;~$H$G7hDj$;$h (BKyokoYoshida <kyokoyoshida123@gmail.com>
29382009/07/18Re: z=(1+i)t t $B": (BR $B$d (B|z|=1/3 $B$N;~$N (B1/z $B$NA|$r5a$a$h (BKyokoYoshida <kyokoyoshida123@gmail.com>
29372009/07/16Re: 次の複素関数の微分可能性を調べ可能なら導関数も求めよ。またentireなのはどれか?chiaki@kit.ac.jp (Tsukamoto Chiaki)
29362009/07/16Re: $B<!$NJ#AG4X?t$NHyJ,2DG=@-$rD4$Y2DG=$J$iF34X?t$b5a$a$h!#$^$? (Bentire $B$J$N$O$I$l$+ (B?KyokoYoshida <kyokoyoshida123@gmail.com>
29352009/07/15Re: u(x,y)=arctan(y/x)が調和関数の時,f(z)をx+iyとzの時とで決定せよchiaki@kit.ac.jp (Tsukamoto Chiaki)
29342009/07/15Re: u(x,y)=arctan(y/x) $B$,D4OB4X?t$N;~ (B,f(z) $B$r (Bx+iy $B$H (Bz $B$N;~$H$G7hDj$;$h (BKyokoYoshida <kyokoyoshida123@gmail.com>
29332009/07/14Re: 次の複素関数の微分可能性を調べ可能なら導関数も求めよ。またentireなのはどれか?chiaki@kit.ac.jp (Tsukamoto Chiaki)
29322009/07/14次の複素関数の微分可能性を調べ可能なら導関数も求めよ。またentireなのはどれか?KyokoYoshida <kyokoyoshida123@gmail.com>
29312009/07/13Re: u(x,y)=arctan(y/x)が調和関数の時,f(z)をx+iyとzの時とで決定せよchiaki@kit.ac.jp (Tsukamoto Chiaki)
29302009/07/13Re: z=(1+i)t t∈Rや|z|=1/3の時の1/zの像を求めよchiaki@kit.ac.jp (Tsukamoto Chiaki)
29292009/07/13u(x,y)=arctan(y/x)が調和関数の時,f(z)をx+iyとzの時とで決定せよKyokoYoshida <kyokoyoshida123@gmail.com>
29282009/07/13Re: z=(1+i)t t $B": (BR $B$d (B|z|=1/3 $B$N;~$N (B1/z $B$NA|$r5a$a$h (BKyokoYoshida <kyokoyoshida123@gmail.com>
29272009/07/13Re: $B"i (B_C 3z^3/((z^2-1)(4z^2-1))dz C $B$O (B|z-i|=3 $B$G;~7W2s$j$H$9$k;~ (B, $B$N@QJ,CM$r5a$a$h (BKyokoYoshida <kyokoyoshida123@gmail.com>
29262009/07/12Re: z=(1+i)t t∈Rや|z|=1/3の時の1/zの像を求めよchiaki@kit.ac.jp (Tsukamoto Chiaki)
29252009/07/12Re: ∫_C 3z^3/((z^2-1)(4z^2-1))dz Cは|z-i|=3で時計回りとする時,の積分値を求めよchiaki@kit.ac.jp (Tsukamoto Chiaki)
29242009/07/12z=(1+i)t t∈Rや|z|=1/3の時の1/zの像を求めよKyokoYoshida <kyokoyoshida123@gmail.com>
29232009/07/11Re: $B"i (B_C 3z^3/((z^2-1)(4z^2-1))dz C $B$O (B|z-i|=3 $B$G;~7W2s$j$H$9$k;~ (B, $B$N@QJ,CM$r5a$a$h (BKyokoYoshida <kyokoyoshida123@gmail.com>
29222009/07/10Re: ∫_C 3z^3/((z^2-1)(4z^2-1))dz Cは|z-i|=3で時計回りとする時,の積分値を求めよchiaki@kit.ac.jp (Tsukamoto Chiaki)
29212009/07/10Re: $B"i (B_C 3z^3/((z^2-1)(4z^2-1))dz C $B$O (B|z-i|=3 $B$G;~7W2s$j$H$9$k;~ (B, $B$N@QJ,CM$r5a$a$h (BKyokoYoshida <kyokoyoshida123@gmail.com>
29202009/07/08Re: ∫_C 3z^3/((z^2-1)(4z^2-1))dz Cは|z-i|=3で時計回りとする時,の積分値を求めよchiaki@kit.ac.jp (Tsukamoto Chiaki)
29192009/07/08Re: $B"i (B_C 3z^3/((z^2-1)(4z^2-1))dz C $B$O (B|z-i|=3 $B$G;~7W2s$j$H$9$k;~ (B, $B$N@QJ,CM$r5a$a$h (BKyokoYoshida <kyokoyoshida123@gmail.com>
29182009/07/08Re: f(z) $B$O2r@OE*$G (BD $BFb$GDj?t$G$J$$$J$i (B|f(z)| $B$O (BD $BFb$G:GBgCM$r;}$?$J$$ (B?KyokoYoshida <kyokoyoshida123@gmail.com>
29172009/07/07Re: ∫_C 3z^3/((z^2-1)(4z^2-1))dz Cは|z-i|=3で時計回りとする時,の積分値を求めよchiaki@kit.ac.jp (Tsukamoto Chiaki)
29162009/07/07Re: f(z)は解析的でD内で定数でないなら|f(z)|はD内で最大値を持たない?chiaki@kit.ac.jp (Tsukamoto Chiaki)
29152009/07/07∫_C 3z^3/((z^2-1)(4z^2-1))dz Cは|z-i|=3で時計回りとする時,の積分値を求めよKyokoYoshida <kyokoyoshida123@gmail.com>
29142009/07/07f(z)は解析的でD内で定数でないなら|f(z)|はD内で最大値を持たない?KyokoYoshida <kyokoyoshida123@gmail.com>
29132009/07/05Re: $B<+8J?oH<<LA| (BA $B$, (BA= $B&2 (B_{j=1}^r $B&A (B_j E_j $B$H (Bspectral $BJ,2t$5$l$k$J$i (B, $B&A (B_j $B$OAj0[$J$k8GM-CM$K$J$k;v$r<($; (BKyokoYoshida <kyokoyoshida123@gmail.com>
29122009/07/04Re: 自己随伴写像AがA=Σ_{j=1}^r α_j E_jとspectral分塊されるなら,α_jは相異なる固有値になる事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
29112009/07/04Re: $B<+8J?oH<<LA| (BA $B$, (BA= $B&2 (B_{j=1}^r $B&A (B_j E_j $B$H (Bspectral $BJ,2t$5$l$k$J$i (B, $B&A (B_j $B$OAj0[$J$k8GM-CM$K$J$k;v$r<($; (BKyokoYoshida <kyokoyoshida123@gmail.com>

Fnews-list 1.9(20180406) -- by Mizuno, MWE <mwe@ccsf.jp>
GnuPG Key ID = ECC8A735
GnuPG Key fingerprint = 9BE6 B9E9 55A5 A499 CD51 946E 9BDC 7870 ECC8 A735