2467 | 2009/02/24 | Re: Eが任意の元ならE^{x_2}はa.e.μ_1可測.μ_1(E^{x_2})はa.e.μ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2466 | 2009/02/24 | Re: R^d\{0}の任意の開集合はR_+ × S^{d-1}の可算個の和集合で表される事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2465 | 2009/02/24 | Re: μ をBorel測度とする時, μが有限⇔ψ:f→L(f)::=∫_a^b f(x)dμ(x)は線形汎写像をなす | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2464 | 2009/02/24 | Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2463 | 2009/02/24 | Re: Eが任意}の元ならE^{x_2}はa.e.μ_1可測.μ_1(E^{x_2})はa.e.μ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | kyokoyoshida123@gmail.com |
2462 | 2009/02/24 | Re: Eが任意}の元ならE^{x_2}はa.e.μ_1可測.μ_1(E^{x_2})はa.e.μ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | kyokoyoshida123@gmail.com |
2461 | 2009/02/24 | Re: μ をBorel測度とする時, μが有限⇔ψ:f→L(f)::=∫_a^b f(x)dμ(x)は線形汎写像をなす | kyokoyoshida123@gmail.com |
2460 | 2009/02/23 | Eが任意}の元ならE^{x_2}はa.e.μ_1可測.μ_1(E^{x_2})はa.e.μ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | kyokoyoshida123@gmail.com |
2459 | 2009/02/23 | Re: f(x,y) $B$r (BR $B!_ (BR $B$G%k%Y!<%02DB,$JHsIi4X?t$H$9$k!#<!$N??56$rH=Dj$;$h (B | kyokoyoshida123@gmail.com |
2458 | 2009/02/22 | Re: EがA_{σδ}の元ならE^{x_2}はμ_1可測.μ_1(E^{x_2})はμ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2457 | 2009/02/22 | X_1,X_2,…,X_kの積測度は集合体A={E_1×E_2×…×E_k;E_i∈M_i}上のpremeasure μ_0の拡張になっている事を確かめよ | kyokoyoshida123@gmail.com |
2456 | 2009/02/22 | R^d=R^{d_1}×R^{d_2}とする時,R^dのルベーグ測度mはm_1×m_2の完備化になっている事を示せ | kyokoyoshida123@gmail.com |
2455 | 2009/02/22 | R^d\{0}の任意の開集合はR_+ × S^{d-1}の可算個の和集合で表される事を示せ | kyokoyoshida123@gmail.com |
2454 | 2009/02/22 | Re: 4 $BCJ3,$G%k%Y!<%0@QJ,$r9=C[$;$h!# (B | kyokoyoshida123@gmail.com |
2453 | 2009/02/22 | μ をBorel測度とする時, μが有限⇔ψ:f→L(f)::=∫_a^b f(x)dμ(x)は線形汎写像をなす | kyokoyoshida123@gmail.com |
2452 | 2009/02/21 | Re: E $B$, (BA_{ $B&R&D (B} $B$N85$J$i (BE^{x_2} $B$O&L (B_1 $B2DB, (B. $B&L (B_1(E^{x_2}) $B$O&L (B_2 $B2DB, (B. $B99$K"i (B_{X_2} f(x_2)d $B&L (B_2(x)=lim[j $B"*!g (B] $B"i (B_{X_2}f_j(x_2)d $B&L (B_2(x) | kyokoyoshida123@gmail.com |
2451 | 2009/02/19 | Re: EがA_{σδ}の元ならE^{x_2}はμ_1可測.μ_1(E^{x_2})はμ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2450 | 2009/02/19 | Re: 4段階でルベーグ積分を構築せよ。 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2449 | 2009/02/19 | Re: E $B$, (BA_{ $B&R&D (B} $B$N85$J$i (BE^{x_2} $B$O&L (B_1 $B2DB, (B. $B&L (B_1(E^{x_2}) $B$O&L (B_2 $B2DB, (B. $B99$K"i (B_{X_2} f(x_2)d $B&L (B_2(x)=lim[j $B"*!g (B] $B"i (B_{X_2}f_j(x_2)d $B&L (B_2(x) | kyokoyoshida123@gmail.com |
2448 | 2009/02/18 | Re: E $B$, (BA_{ $B&R&D (B} $B$N85$J$i (BE^{x_2} $B$O&L (B_1 $B2DB, (B. $B&L (B_1(E^{x_2}) $B$O&L (B_2 $B2DB, (B. $B99$K"i (B_{X_2} f(x_2)d $B&L (B_2(x)=lim[j $B"*!g (B] $B"i (B_{X_2}f_j(x_2)d $B&L (B_2(x) | kyokoyoshida123@gmail.com |
2447 | 2009/02/18 | Re: 4 $BCJ3,$G%k%Y!<%0@QJ,$r9=C[$;$h!# (B | kyokoyoshida123@gmail.com |
2446 | 2009/02/16 | Re: ∫_(R^d)|f(x)|dx=∫[0..∞]m(E_α)dα(但し,mはルベーグ測度)となる事示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2445 | 2009/02/16 | Re: EがA_{σδ}の元ならE^{x_2}はμ_1可測.μ_1(E^{x_2})はμ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2444 | 2009/02/16 | Re: 4段階でルベーグ積分を構築せよ。 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2443 | 2009/02/15 | Re: $B"i (B_(R^d)|f(x)|dx= $B"i (B[0.. $B!g (B]m(E_ $B&A (B)d $B&A (B ( $BC"$7 (B,m $B$O%k%Y!<%0B,EY (B) $B$H$J$k;v<($; (B | kyokoyoshida123@gmail.com |
2442 | 2009/02/15 | Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2441 | 2009/02/15 | Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2440 | 2009/02/15 | Re: f(x,y) $B$r (BR $B!_ (BR $B$G%k%Y!<%02DB,$JHsIi4X?t$H$9$k!#<!$N??56$rH=Dj$;$h (B | kyokoyoshida123@gmail.com |
2439 | 2009/02/15 | Re: f(x,y) $B$r (BR $B!_ (BR $B$G%k%Y!<%02DB,$JHsIi4X?t$H$9$k!#<!$N??56$rH=Dj$;$h (B | kyokoyoshida123@gmail.com |
2438 | 2009/02/14 | Re: f(x,y) $B$r (BR $B!_ (BR $B$G%k%Y!<%02DB,$JHsIi4X?t$H$9$k!#<!$N??56$rH=Dj$;$h (B | kyokoyoshida123@gmail.com |
2437 | 2009/02/14 | EがA_{σδ}の元ならE^{x_2}はμ_1可測.μ_1(E^{x_2})はμ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | kyokoyoshida123@gmail.com |
2436 | 2009/02/13 | 4段階でルベーグ積分を構築せよ。 | kyokoyoshida123@gmail.com |
2435 | 2009/02/13 | Re: A $B$O=89gBN (B,M:= $B&R (B(A) $B$G&L$O (Bpremeasure $B$+$i3HD%$5$l$?B,EY (B. $B&L$,&RM-8B$J$i&L$O0l0UE*$KB8:_$9$k (B | kyokoyoshida123@gmail.com |
2434 | 2009/02/10 | Re: Aは集合体,M:=σ(A)でμはpremeasureから拡張された測度.μがσ有限ならμは一意的に存在する | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2433 | 2009/02/10 | Re: A $B$O=89gBN (B,M:= $B&R (B(A) $B$G&L$O (Bpremeasure $B$+$i3HD%$5$l$?B,EY (B. $B&L$,&RM-8B$J$i&L$O0l0UE*$KB8:_$9$k (B | kyokoyoshida123@gmail.com |
2432 | 2009/02/09 | Re: Aは集合体,M:=σ(A)でμはpremeasureから拡張された測度.μがσ有限ならμは一意的に存在する | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2431 | 2009/02/09 | Aは集合体,M:=σ(A)でμはpremeasureから拡張された測度.μがσ有限ならμは一意的に存在する | kyokoyoshida123@gmail.com |
2430 | 2009/02/09 | Re: E $B$, (BCaratheodory $B2DB,"N (BE $B$O (BLebesgue $B2DB, (B | kyokoyoshida123@gmail.com |
2429 | 2009/02/07 | Re: EがCaratheodory可測⇔EはLebesgue可測 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2428 | 2009/02/07 | Re: E $B$, (BCaratheodory $B2DB,"N (BE $B$O (BLebesgue $B2DB, (B | kyokoyoshida123@gmail.com |
2427 | 2009/02/07 | Re: Borel $BB,EY$,M-8BH>7B5e$GM-8B$J$i&L (B(O $B!@ (BE)< $B&E (B, $B&L (B(E $B!@ (BF)< $B&E$G (BF $B"> (BE $B"> (BO $B$J$k (B, $B3+JD=89g (BO $B$H (BF $B$,<h$l$k (B | kyokoyoshida123@gmail.com |
2426 | 2009/02/06 | Re: Borel測度が有限半径球で有限ならμ(O\E)<ε,μ(E\F)<εでF⊂E⊂Oなる,開閉集合OとFが取れる | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2425 | 2009/02/06 | Re: Borel $BB,EY$,M-8BH>7B5e$GM-8B$J$i&L (B(O $B!@ (BE)< $B&E (B, $B&L (B(E $B!@ (BF)< $B&E$G (BF $B"> (BE $B"> (BO $B$J$k (B, $B3+JD=89g (BO $B$H (BF $B$,<h$l$k (B | kyokoyoshida123@gmail.com |
2424 | 2009/02/04 | Re: 任意の4点に接する曲面 | tesigana@diary.ocn.ne.jp (tesigana@diary.ocn.ne.jp) |
2423 | 2009/02/03 | Re: 任意の4点に接する曲面 | tanaq <tanaq@ca2.so-net.ne.jp> |
2422 | 2009/02/03 | Re: Borel測度が有限半径球で有限ならμ(O\E)<ε,μ(E\F)<εでF⊂E⊂Oなる,開閉集合OとFが取れる | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2421 | 2009/02/03 | Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2420 | 2009/02/03 | Borel測度が有限半径球で有限ならμ(O\E)<ε,μ(E\F)<εでF⊂E⊂Oなる,開閉集合OとFが取れる | kyokoyoshida123@gmail.com |
2419 | 2009/02/03 | Re: f(x,y) $B$r (BR $B!_ (BR $B$G%k%Y!<%02DB,$JHsIi4X?t$H$9$k!#<!$N??56$rH=Dj$;$h (B | kyokoyoshida123@gmail.com |
2418 | 2009/02/02 | Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |