2388 | 2008/12/25 | Re: f:V(+)V(×)V*→Fをf((v+v')(×)g)=g(v)+g(v')で定義する.fが線形写像である事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2387 | 2008/12/24 | Re: f:V(+)V( $B!_ (B)V* $B"* (BF $B$r (Bf((v+v')( $B!_ (B)g)=g(v)+g(v') $B$GDj5A$9$k (B.f $B$,@~7A<LA|$G$"$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2386 | 2008/12/21 | Re: P_Aを最小多項式とし,P_A(t)=Π[i=1..r](t-α_i)^m_iでα_1,α_2,…,α_rが相異なるならP_(f(A))は次数1の因数で表される事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2385 | 2008/12/20 | Re: P_A $B$r:G>.B?9`<0$H$7 (B,P_A(t)= $B&0 (B[i=1..r](t- $B&A (B_i)^m_i $B$G&A (B_1, $B&A (B_2, $B!D (B, $B&A (B_r $B$,Aj0[$J$k$J$i (BP_(f(A)) $B$O<!?t (B1 $B$N0x?t$GI=$5$l$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2384 | 2008/12/14 | Re: ( $BB3 (B)( $B&8 (B, $B&2 (B, $B&L (B) $B$,&RM-8BB,EY6u4V$G (B1 $B!e (Bp< $B!g$G (Bf_k $B$O (Bf $B$K (BL^p $B<}B+$G"O (Bx $B":&8 (B,lim[k $B"*!g (B]g_k(x)=g(x) $B$G"O (Bk, $B!B (Bg_k $B!B (B_ $B!g!e (BM $B$J$i (Bf_kg_k $B$O (Bfg $B$K (BL^p $B<}B+$9$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2383 | 2008/12/12 | Re: f:V(+)V(×)V*→Fをf((v+v')(×)g)=g(v)+g(v')で定義する.fが線形写像である事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2382 | 2008/12/12 | Re: P_Aを最小多項式とし,P_A(t)=Π[i=1..r](t-α_i)^m_iでα_1,α_2,…,α_rが相異なるならP_(f(A))は次数1の因数で表される事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2381 | 2008/12/12 | Re: (続)(Ω,Σ,μ)がσ有限測度空間で1≦p<∞でf_kはfにL^p収束で∀x∈Ω,lim[k→∞]g_k(x)=g(x)で∀k,‖g_k‖_∞≦Mならf_kg_kはfgにL^p収束する事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2380 | 2008/12/12 | Re: f:V(+)V( $B!_ (B)V* $B"* (BF $B$r (Bf((v+v')( $B!_ (B)g)=g(v)+g(v') $B$GDj5A$9$k (B.f $B$,@~7A<LA|$G$"$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2379 | 2008/12/12 | Re: P_A $B$r:G>.B?9`<0$H$7 (B,P_A(t)= $B&0 (B[i=1..r](t- $B&A (B_i)^m_i $B$G&A (B_1, $B&A (B_2, $B!D (B, $B&A (B_r $B$,Aj0[$J$k$J$i (BP_(f(A)) $B$O<!?t (B1 $B$N0x?t$GI=$5$l$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2378 | 2008/12/12 | Re: ( $BB3 (B)( $B&8 (B, $B&2 (B, $B&L (B) $B$,&RM-8BB,EY6u4V$G (B1 $B!e (Bp< $B!g$G (Bf_k $B$O (Bf $B$K (BL^p $B<}B+$G"O (Bx $B":&8 (B,lim[k $B"*!g (B]g_k(x)=g(x) $B$G"O (Bk, $B!B (Bg_k $B!B (B_ $B!g!e (BM $B$J$i (Bf_kg_k $B$O (Bfg $B$K (BL^p $B<}B+$9$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2377 | 2008/12/11 | Re: (続)(Ω,Σ,μ)がσ有限測度空間で1≦p<∞でf_kはfにL^p収束で∀x∈Ω,lim[k→∞]g_k(x)=g(x)で∀k,‖g_k‖_∞≦Mならf_kg_kはfgにL^p収束する事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2376 | 2008/12/11 | (続)(Ω,Σ,μ)がσ有限測度空間で1≦p<∞でf_kはfにL^p収束で∀x∈Ω,lim[k→∞]g_k(x)=g(x)で∀k,‖g_k‖_∞≦Mならf_kg_kはfgにL^p収束する事を示せ | kyokoyoshida123@gmail.com |
2375 | 2008/12/11 | Re: P_Aを最小多項式とし,P_A(t)=Π[i=1..r](t-α_i)^m_iでα_1,α_2,…,α_rが相異なるならP_(f(A))は次数1の因数で表される事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2374 | 2008/12/11 | Re: f:V(+)V(×)V*→Fをf((v+v')(×)g)=g(v)+g(v')で定義する.fが線形写像である事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2373 | 2008/12/10 | P_Aを最小多項式とし,P_A(t)=Π[i=1..r](t-α_i)^m_iでα_1,α_2,…,α_rが相異なるならP_(f(A))は次数1の因数で表される事を示せ | kyokoyoshida123@gmail.com |
2372 | 2008/12/10 | Re: f:V(+)V( $B!_ (B)V* $B"* (BF $B$r (Bf((v+v')( $B!_ (B)g)=g(v)+g(v') $B$GDj5A$9$k (B.f $B$,@~7A<LA|$G$"$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2371 | 2008/12/09 | Re: E_ji $B$,8GM-%Y%/%H%k$G$"$k;v$r<($;!# (B | kyokoyoshida123@gmail.com |
2370 | 2008/12/08 | Re: f:V(+)V(×)V*→Fをf((v+v')(×)g)=g(v)+g(v')で定義する.fが線形写像である事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2369 | 2008/12/08 | Re: f:V(+)V( $B!_ (B)V* $B"* (BF $B$r (Bf((v+v')( $B!_ (B)g)=g(v)+g(v') $B$GDj5A$9$k (B.f $B$,@~7A<LA|$G$"$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2368 | 2008/12/08 | A unique way to learn English & Foreign Language | yuj99 <yuj1010@gmail.com> |
2367 | 2008/12/08 | Re: f:V(+)V(×)V*→Fをf((v+v')(×)g)=g(v)+g(v')で定義する.fが線形写像である事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2366 | 2008/12/08 | Re: E_jiが固有ベクトルである事を示せ。 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2365 | 2008/12/07 | f:V(+)V(×)V*→Fをf((v+v')(×)g)=g(v)+g(v')で定義する.fが線形写像である事を示せ | kyokoyoshida123@gmail.com |
2364 | 2008/12/07 | Re: E_ji $B$,8GM-%Y%/%H%k$G$"$k;v$r<($;!# (B | kyokoyoshida123@gmail.com |
2363 | 2008/12/06 | Re: ( $B&8 (B, $B&2 (B, $B&L (B) $B$K$*$$$F (Bf_k $B$O (Bf $B$K (BL^p $B<}B+ (B(1 $B!e (Bp $B!e!g (B) $B$J$i"O (Bg $B": (BL^q (1/p+1/q=1) $B$KBP$7$F"i (B_ $B&8 (Bf_k(x)g(x)d $B&L"*"i (B_ $B&8 (Bf(x)g(x)d $B&L$r<($; (B ↑ リクエストされた記事 | kyokoyoshida123@gmail.com |
2362 | 2008/12/05 | Re: E_jiが固有ベクトルである事を示せ。 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2361 | 2008/12/05 | E_jiが固有ベクトルである事を示せ。 | kyokoyoshida123@gmail.com |
2360 | 2008/12/05 | Re: (Ω,Σ,μ)においてf_kはfにL^p収束(1≦p≦∞)なら∀g∈L^q (1/p+1/q=1)に対して∫_Ωf_k(x)g(x)dμ→∫_Ωf(x)g(x)dμを示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2359 | 2008/12/05 | Re: ( $B&8 (B, $B&2 (B, $B&L (B) $B$,&RM-8BB,EY6u4V$G (B1 $B!e (Bp< $B!g$G (Bf_k $B$O (Bf $B$K (BL^p $B<}B+$G"O (Bx $B":&8 (B,lim[k $B"*!g (B]g_k(x)=g(x) $B$G"O (Bk, $B!B (Bg_k $B!B (B_ $B!g!e (BM $B$J$i (Bf_kg_k $B$O (Bfg $B$K (BL^p $B<}B+$9$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2358 | 2008/12/05 | Re: ( $B&8 (B, $B&2 (B, $B&L (B) $B$K$*$$$F (Bf_k $B$O (Bf $B$K (BL^p $B<}B+ (B(1 $B!e (Bp $B!e!g (B) $B$J$i"O (Bg $B": (BL^q (1/p+1/q=1) $B$KBP$7$F"i (B_ $B&8 (Bf_k(x)g(x)d $B&L"*"i (B_ $B&8 (Bf(x)g(x)d $B&L$r<($; (B | kyokoyoshida123@gmail.com |
2357 | 2008/12/05 | Re: (Ω,Σ,μ)においてf_kはfにL^p収束(1≦p≦∞)なら∀g∈L^q (1/p+1/q=1)に対して∫_Ωf_k(x)g(x)dμ→∫_Ωf(x)g(x)dμを示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2356 | 2008/12/04 | Re: ( $B&8 (B, $B&2 (B, $B&L (B) $B$K$*$$$F (Bf_k $B$O (Bf $B$K (BL^p $B<}B+ (B(1 $B!e (Bp $B!e!g (B) $B$J$i"O (Bg $B": (BL^q (1/p+1/q=1) $B$KBP$7$F"i (B_ $B&8 (Bf_k(x)g(x)d $B&L"*"i (B_ $B&8 (Bf(x)g(x)d $B&L$r<($; (B | kyokoyoshida123@gmail.com |
2355 | 2008/12/03 | Re: (Ω,Σ,μ)がσ有限測度空間で1≦p<∞でf_kはfにL^p収束で∀x∈Ω,lim[k→∞]g_k(x)=g(x)で∀k,‖g_k‖_∞≦Mならf_kg_kはfgにL^p収束する事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2354 | 2008/12/03 | Re: (Ω,Σ,μ)においてf_kはfにL^p収束(1≦p≦∞)なら∀g∈L^q (1/p+1/q=1)に対して∫_Ωf_k(x)g(x)dμ→∫_Ωf(x)g(x)dμを示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2353 | 2008/12/03 | Re: ( $B&8 (B, $B&2 (B, $B&L (B) $B$,&RM-8BB,EY6u4V$G (B1 $B!e (Bp< $B!g$G (Bf_k $B$O (Bf $B$K (BL^p $B<}B+$G"O (Bx $B":&8 (B,lim[k $B"*!g (B]g_k(x)=g(x) $B$G"O (Bk, $B!B (Bg_k $B!B (B_ $B!g!e (BM $B$J$i (Bf_kg_k $B$O (Bfg $B$K (BL^p $B<}B+$9$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2352 | 2008/12/03 | Re: ( $B&8 (B, $B&2 (B, $B&L (B) $B$K$*$$$F (Bf_k $B$O (Bf $B$K (BL^p $B<}B+ (B(1 $B!e (Bp $B!e!g (B) $B$J$i"O (Bg $B": (BL^q (1/p+1/q=1) $B$KBP$7$F"i (B_ $B&8 (Bf_k(x)g(x)d $B&L"*"i (B_ $B&8 (Bf(x)g(x)d $B&L$r<($; (B | kyokoyoshida123@gmail.com |
2351 | 2008/12/02 | Re: (Ω,Σ,μ)がσ有限測度空間で1≦p<∞でf_kはfにL^p収束で∀x∈Ω,lim[k→∞]g_k(x)=g(x)で∀k,‖g_k‖_∞≦Mならf_kg_kはfgにL^p収束する事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2350 | 2008/12/02 | Re: (Ω,Σ,μ)においてf_kはfにL^p収束(1≦p≦∞)なら∀g∈L^q (1/p+1/q=1)に対して∫_Ωf_k(x)g(x)dμ→∫_Ωf(x)g(x)dμを示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2349 | 2008/12/02 | (Ω,Σ,μ)がσ有限測度空間で1≦p<∞でf_kはfにL^p収束で∀x∈Ω,lim[k→∞]g_k(x)=g(x)で∀k,‖g_k‖_∞≦Mならf_kg_kはfgにL^p収束する事を示せ | kyokoyoshida123@gmail.com |
2348 | 2008/12/02 | (Ω,Σ,μ)においてf_kはfにL^p収束(1≦p≦∞)なら∀g∈L^q (1/p+1/q=1)に対して∫_Ωf_k(x)g(x)dμ→∫_Ωf(x)g(x)dμを示せ | kyokoyoshida123@gmail.com |
2347 | 2008/12/01 | GPS math | "Jon G." <jon8338@peoplepc.com> |
2346 | 2008/11/26 | GPS math | "Jon G." <jon8338@peoplepc.com> |
2345 | 2008/11/24 | Re: f_n $B$O&22DB,4X?t$H$9$k!#$b$7 (Bf_n $B!f (B0 $B&L (B-a.e $B$J$i$P"i (B_ $B&8&2 (B[n=1.. $B!g (B]f_nd $B&L (B= $B&2 (B[n=1.. $B!g (B] $B"i (B_ $B&8 (Bf_nd $B&L$r<($; (B | kyokoyoshida123@gmail.com |
2344 | 2008/11/24 | Re: f_nはΣ可測関数とする。もしf_n≧0 μ-a.eならば∫_ΩΣ[n=1..∞]f_ndμ=Σ[n=1..∞]∫_Ωf_ndμを示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2343 | 2008/11/23 | Re: f_n $B$O&22DB,4X?t$H$9$k!#$b$7 (Bf_n $B!f (B0 $B&L (B-a.e $B$J$i$P"i (B_ $B&8&2 (B[n=1.. $B!g (B]f_nd $B&L (B= $B&2 (B[n=1.. $B!g (B] $B"i (B_ $B&8 (Bf_nd $B&L$r<($; (B | kyokoyoshida123@gmail.com |
2342 | 2008/11/22 | Re: f_n $B$O&22DB,4X?t$H$9$k!#$b$7 (Bf_n $B!f (B0 $B&L (B-a.e $B$J$i$P"i (B_ $B&8&2 (B[n=1.. $B!g (B]f_nd $B&L (B= $B&2 (B[n=1.. $B!g (B] $B"i (B_ $B&8 (Bf_nd $B&L$r<($; (B | kyokoyoshida123@gmail.com |
2341 | 2008/11/21 | Re: f_nはΣ可測関数とする。もしf_n≧0 μ-a.eならば∫_ΩΣ[n=1..∞]f_ndμ=Σ[n=1..∞]∫_Ωf_ndμを示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2340 | 2008/11/21 | Re: f_n $B$O&22DB,4X?t$H$9$k!#$b$7 (Bf_n $B!f (B0 $B&L (B-a.e $B$J$i$P"i (B_ $B&8&2 (B[n=1.. $B!g (B]f_nd $B&L (B= $B&2 (B[n=1.. $B!g (B] $B"i (B_ $B&8 (Bf_nd $B&L$r<($; (B | kyokoyoshida123@gmail.com |
2339 | 2008/11/20 | Re: f_nはΣ可測関数とする。もしf_n≧0 μ-a.eならば∫_ΩΣ[n=1..∞]f_ndμ=Σ[n=1..∞]∫_Ωf_ndμを示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |