記事一覧

条件に一致する記事の数: 3953件

記事一覧へ

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81]
Date(投稿日時):Subject(見出し):From(投稿者):
24232009/02/03Re: 任意の4点に接する曲面tanaq <tanaq@ca2.so-net.ne.jp>
24222009/02/03Re: Borel測度が有限半径球で有限ならμ(O\E)<ε,μ(E\F)<εでF⊂E⊂Oなる,開閉集合OとFが取れるchiaki@kit.ac.jp (Tsukamoto Chiaki)
24212009/02/03Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよchiaki@kit.ac.jp (Tsukamoto Chiaki)
24202009/02/03Borel測度が有限半径球で有限ならμ(O\E)<ε,μ(E\F)<εでF⊂E⊂Oなる,開閉集合OとFが取れるkyokoyoshida123@gmail.com
24192009/02/03Re: f(x,y) $B$r (BR $B!_ (BR $B$G%k%Y!<%02DB,$JHsIi4X?t$H$9$k!#<!$N??56$rH=Dj$;$h (Bkyokoyoshida123@gmail.com
24182009/02/02Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよchiaki@kit.ac.jp (Tsukamoto Chiaki)
24172009/02/02Re: ∫_(R^d)|f(x)|dx=∫[0..∞]m(E_α)dα (但し,mはルベーグ測度)となる事示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
24162009/02/02Re: f(x,y) $B$r (BR $B!_ (BR $B$G%k%Y!<%02DB,$JHsIi4X?t$H$9$k!#<!$N??56$rH=Dj$;$h (Bkyokoyoshida123@gmail.com
24152009/02/02Re: $B"i (B_(R^d)|f(x)|dx= $B"i (B[0.. $B!g (B]m(E_ $B&A (B)d $B&A (B ( $BC"$7 (B,m $B$O%k%Y!<%0B,EY (B) $B$H$J$k;v<($; (Bkyokoyoshida123@gmail.com
24142009/01/31Re: 任意の4点に接する曲面chiaki@kit.ac.jp (Tsukamoto Chiaki)
24132009/01/31Re: EがCaratheodory可測⇔EはLebesgue可測chiaki@kit.ac.jp (Tsukamoto Chiaki)
24112009/01/31Re: 任意の4点に接する曲面tanaq <tanaq@ca2.so-net.ne.jp>
24102009/01/30Re: 任意の4点に接する曲面tesigana@diary.ocn.ne.jp (tesigana@diary.ocn.ne.jp)
24092009/01/30Re: 任意の4点に接する曲面kono@ie.u-ryukyu.ac.jp (Shinji KONO)
24082009/01/30Re: 任意の4点に接する曲面toda@lbm.go.jp
24072009/01/30Re: 任意の4点に接する曲面chiaki@kit.ac.jp (Tsukamoto Chiaki)
24062009/01/29任意の4点に接する曲面tanaq <tanaq@ca2.so-net.ne.jp>
24052009/01/28Re: EがCaratheodory可測⇔EはLebesgue可測chiaki@kit.ac.jp (Tsukamoto Chiaki)
24042009/01/28Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよchiaki@kit.ac.jp (Tsukamoto Chiaki)
24032009/01/28Re: ∫_(R^d)|f(x)|dx=∫[0..∞]m(E_α)dα (但し,mはルベーグ測度)となる事示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
24022009/01/28Re: E $B$, (BCaratheodory $B2DB,"N (BE $B$O (BLebesgue $B2DB, (Bkyokoyoshida123@gmail.com
24012009/01/27Re: EがCaratheodory可測⇔EはLebesgue可測chiaki@kit.ac.jp (Tsukamoto Chiaki)
24002009/01/27Re: EがCaratheodory可測⇔EはLebesgue可測kyokoyoshida123@gmail.com
23992009/01/26Re: f(x,y) $B$r (BR $B!_ (BR $B$G%k%Y!<%02DB,$JHsIi4X?t$H$9$k!#<!$N??56$rH=Dj$;$h (Bkyokoyoshida123@gmail.com
23982009/01/25EがCaratheodory可測⇔EはLebesgue可測kyokoyoshida123@gmail.com
23972009/01/25Re: $B"i (B_(R^d)|f(x)|dx= $B"i (B[0.. $B!g (B]m(E_ $B&A (B)d $B&A (B ( $BC"$7 (B,m $B$O%k%Y!<%0B,EY (B) $B$H$J$k;v<($; (Bkyokoyoshida123@gmail.com
23962009/01/20Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよchiaki@kit.ac.jp (Tsukamoto Chiaki)
23952009/01/20Re: ∫_(R^d)|f(x)|dx=∫[0..∞]m(E_α)dα (但し,mはルベーグ測度)となる事示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
23942009/01/19Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよkyokoyoshida123@gmail.com
23932009/01/19f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよkyokoyoshida123@gmail.com
23922009/01/19∫_(R^d)|f(x)|dx=∫[0..∞]m(E_α)dα (但し,mはルベーグ測度)となる事示せkyokoyoshida123@gmail.com
23912009/01/14物理の本 - Fun with physics on free 1600 pagesChristoph Schiller <chri_schiller@yahoo.com>
23902008/12/29Re: P_A $B$r:G>.B?9`<0$H$7 (B,P_A(t)= $B&0 (B[i=1..r](t- $B&A (B_i)^m_i $B$G&A (B_1, $B&A (B_2, $B!D (B, $B&A (B_r $B$,Aj0[$J$k$J$i (BP_(f(A)) $B$O<!?t (B1 $B$N0x?t$GI=$5$l$k;v$r<($; (Bkyokoyoshida123@gmail.com
23892008/12/29Re: f:V(+)V( $B!_ (B)V* $B"* (BF $B$r (Bf((v+v')( $B!_ (B)g)=g(v)+g(v') $B$GDj5A$9$k (B.f $B$,@~7A<LA|$G$"$k;v$r<($; (Bkyokoyoshida123@gmail.com
23882008/12/25Re: f:V(+)V(×)V*→Fをf((v+v')(×)g)=g(v)+g(v')で定義する.fが線形写像である事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
23872008/12/24Re: f:V(+)V( $B!_ (B)V* $B"* (BF $B$r (Bf((v+v')( $B!_ (B)g)=g(v)+g(v') $B$GDj5A$9$k (B.f $B$,@~7A<LA|$G$"$k;v$r<($; (Bkyokoyoshida123@gmail.com
23862008/12/21Re: P_Aを最小多項式とし,P_A(t)=Π[i=1..r](t-α_i)^m_iでα_1,α_2,…,α_rが相異なるならP_(f(A))は次数1の因数で表される事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
23852008/12/20Re: P_A $B$r:G>.B?9`<0$H$7 (B,P_A(t)= $B&0 (B[i=1..r](t- $B&A (B_i)^m_i $B$G&A (B_1, $B&A (B_2, $B!D (B, $B&A (B_r $B$,Aj0[$J$k$J$i (BP_(f(A)) $B$O<!?t (B1 $B$N0x?t$GI=$5$l$k;v$r<($; (Bkyokoyoshida123@gmail.com
23842008/12/14Re: ( $BB3 (B)( $B&8 (B, $B&2 (B, $B&L (B) $B$,&RM-8BB,EY6u4V$G (B1 $B!e (Bp< $B!g$G (Bf_k $B$O (Bf $B$K (BL^p $B<}B+$G"O (Bx $B":&8 (B,lim[k $B"*!g (B]g_k(x)=g(x) $B$G"O (Bk, $B!B (Bg_k $B!B (B_ $B!g!e (BM $B$J$i (Bf_kg_k $B$O (Bfg $B$K (BL^p $B<}B+$9$k;v$r<($; (Bkyokoyoshida123@gmail.com
23832008/12/12Re: f:V(+)V(×)V*→Fをf((v+v')(×)g)=g(v)+g(v')で定義する.fが線形写像である事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
23822008/12/12Re: P_Aを最小多項式とし,P_A(t)=Π[i=1..r](t-α_i)^m_iでα_1,α_2,…,α_rが相異なるならP_(f(A))は次数1の因数で表される事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
23812008/12/12Re: (続)(Ω,Σ,μ)がσ有限測度空間で1≦p<∞でf_kはfにL^p収束で∀x∈Ω,lim[k→∞]g_k(x)=g(x)で∀k,‖g_k‖_∞≦Mならf_kg_kはfgにL^p収束する事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
23802008/12/12Re: f:V(+)V( $B!_ (B)V* $B"* (BF $B$r (Bf((v+v')( $B!_ (B)g)=g(v)+g(v') $B$GDj5A$9$k (B.f $B$,@~7A<LA|$G$"$k;v$r<($; (Bkyokoyoshida123@gmail.com
23792008/12/12Re: P_A $B$r:G>.B?9`<0$H$7 (B,P_A(t)= $B&0 (B[i=1..r](t- $B&A (B_i)^m_i $B$G&A (B_1, $B&A (B_2, $B!D (B, $B&A (B_r $B$,Aj0[$J$k$J$i (BP_(f(A)) $B$O<!?t (B1 $B$N0x?t$GI=$5$l$k;v$r<($; (Bkyokoyoshida123@gmail.com
23782008/12/12Re: ( $BB3 (B)( $B&8 (B, $B&2 (B, $B&L (B) $B$,&RM-8BB,EY6u4V$G (B1 $B!e (Bp< $B!g$G (Bf_k $B$O (Bf $B$K (BL^p $B<}B+$G"O (Bx $B":&8 (B,lim[k $B"*!g (B]g_k(x)=g(x) $B$G"O (Bk, $B!B (Bg_k $B!B (B_ $B!g!e (BM $B$J$i (Bf_kg_k $B$O (Bfg $B$K (BL^p $B<}B+$9$k;v$r<($; (Bkyokoyoshida123@gmail.com
23772008/12/11Re: (続)(Ω,Σ,μ)がσ有限測度空間で1≦p<∞でf_kはfにL^p収束で∀x∈Ω,lim[k→∞]g_k(x)=g(x)で∀k,‖g_k‖_∞≦Mならf_kg_kはfgにL^p収束する事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
23762008/12/11(続)(Ω,Σ,μ)がσ有限測度空間で1≦p<∞でf_kはfにL^p収束で∀x∈Ω,lim[k→∞]g_k(x)=g(x)で∀k,‖g_k‖_∞≦Mならf_kg_kはfgにL^p収束する事を示せkyokoyoshida123@gmail.com
23752008/12/11Re: P_Aを最小多項式とし,P_A(t)=Π[i=1..r](t-α_i)^m_iでα_1,α_2,…,α_rが相異なるならP_(f(A))は次数1の因数で表される事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
23742008/12/11Re: f:V(+)V(×)V*→Fをf((v+v')(×)g)=g(v)+g(v')で定義する.fが線形写像である事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
23732008/12/10P_Aを最小多項式とし,P_A(t)=Π[i=1..r](t-α_i)^m_iでα_1,α_2,…,α_rが相異なるならP_(f(A))は次数1の因数で表される事を示せkyokoyoshida123@gmail.com

Fnews-list 1.9(20180406) -- by Mizuno, MWE <mwe@ccsf.jp>
GnuPG Key ID = ECC8A735
GnuPG Key fingerprint = 9BE6 B9E9 55A5 A499 CD51 946E 9BDC 7870 ECC8 A735