記事一覧

条件に一致する記事の数: 3953件

記事一覧へ

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80]
Date(投稿日時):Subject(見出し):From(投稿者):
23492008/12/02(Ω,Σ,μ)がσ有限測度空間で1≦p<∞でf_kはfにL^p収束で∀x∈Ω,lim[k→∞]g_k(x)=g(x)で∀k,‖g_k‖_∞≦Mならf_kg_kはfgにL^p収束する事を示せkyokoyoshida123@gmail.com
23482008/12/02(Ω,Σ,μ)においてf_kはfにL^p収束(1≦p≦∞)なら∀g∈L^q (1/p+1/q=1)に対して∫_Ωf_k(x)g(x)dμ→∫_Ωf(x)g(x)dμを示せkyokoyoshida123@gmail.com
23472008/12/01GPS math"Jon G." <jon8338@peoplepc.com>
23462008/11/26GPS math"Jon G." <jon8338@peoplepc.com>
23452008/11/24Re: f_n $B$O&22DB,4X?t$H$9$k!#$b$7 (Bf_n $B!f (B0 $B&L (B-a.e $B$J$i$P"i (B_ $B&8&2 (B[n=1.. $B!g (B]f_nd $B&L (B= $B&2 (B[n=1.. $B!g (B] $B"i (B_ $B&8 (Bf_nd $B&L$r<($; (Bkyokoyoshida123@gmail.com
23442008/11/24Re: f_nはΣ可測関数とする。もしf_n≧0 μ-a.eならば∫_ΩΣ[n=1..∞]f_ndμ=Σ[n=1..∞]∫_Ωf_ndμを示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
23432008/11/23Re: f_n $B$O&22DB,4X?t$H$9$k!#$b$7 (Bf_n $B!f (B0 $B&L (B-a.e $B$J$i$P"i (B_ $B&8&2 (B[n=1.. $B!g (B]f_nd $B&L (B= $B&2 (B[n=1.. $B!g (B] $B"i (B_ $B&8 (Bf_nd $B&L$r<($; (Bkyokoyoshida123@gmail.com
23422008/11/22Re: f_n $B$O&22DB,4X?t$H$9$k!#$b$7 (Bf_n $B!f (B0 $B&L (B-a.e $B$J$i$P"i (B_ $B&8&2 (B[n=1.. $B!g (B]f_nd $B&L (B= $B&2 (B[n=1.. $B!g (B] $B"i (B_ $B&8 (Bf_nd $B&L$r<($; (Bkyokoyoshida123@gmail.com
23412008/11/21Re: f_nはΣ可測関数とする。もしf_n≧0 μ-a.eならば∫_ΩΣ[n=1..∞]f_ndμ=Σ[n=1..∞]∫_Ωf_ndμを示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
23402008/11/21Re: f_n $B$O&22DB,4X?t$H$9$k!#$b$7 (Bf_n $B!f (B0 $B&L (B-a.e $B$J$i$P"i (B_ $B&8&2 (B[n=1.. $B!g (B]f_nd $B&L (B= $B&2 (B[n=1.. $B!g (B] $B"i (B_ $B&8 (Bf_nd $B&L$r<($; (Bkyokoyoshida123@gmail.com
23392008/11/20Re: f_nはΣ可測関数とする。もしf_n≧0 μ-a.eならば∫_ΩΣ[n=1..∞]f_ndμ=Σ[n=1..∞]∫_Ωf_ndμを示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
23382008/11/20f_nはΣ可測関数とする。もしf_n≧0 μ-a.eならば∫_ΩΣ[n=1..∞]f_ndμ=Σ[n=1..∞]∫_Ωf_ndμを示せkyokoyoshida123@gmail.com
23372008/11/17Re: (v_1+v_2)( $B!_ (B)w=v_1( $B!_ (B)w + v_2( $B!_ (B)w $B$N>ZL@ (Bcchikakoo@yahoo.co.jp
23362008/11/13数学の適用制限nagaya <pblic-commitment@st-nagaya.jp>
23352008/11/12Re: (v_1+v_2)(×)w=v_1(×)w + v_2(×)wの証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
23342008/11/12Re: (v_1+v_2)( $B!_ (B)w=v_1( $B!_ (B)w + v_2( $B!_ (B)w $B$N>ZL@ (Bcchikakoo@yahoo.co.jp
23332008/11/10Re: (v_1+v_2)(×)w=v_1(×)w + v_2(×)wの証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
23322008/11/10Re: (v_1+v_2)( $B!_ (B)w=v_1( $B!_ (B)w + v_2( $B!_ (B)w $B$N>ZL@ (Bcchikakoo@yahoo.co.jp
23312008/11/10Re: (v_1+v_2)(×)w=v_1(×)w + v_2(×)wの証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
23302008/11/09Re: (v_1+v_2)( $B!_ (B)w=v_1( $B!_ (B)w + v_2( $B!_ (B)w $B$N>ZL@ (Bcchikakoo@yahoo.co.jp
23292008/11/08Re: (v_1+v_2)(×)w=v_1(×)w + v_2(×)wの証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
23282008/11/07Re: (v_1+v_2)(×)w=v_1(×)w + v_2(×)wの証明cchikakoo@yahoo.co.jp
23272008/11/06Re: $BB,EY6u4V (B(R,B(R), $B&L (B) $B$G (Bf(x)=x^2 $B$N;~ (B, $B"i (B_R fd $B&L$r7W;;$;$h (Bkyokoyoshida123@gmail.com
23262008/11/06Re: ( $B&8 (B, $B&2 (B, $B&L (B) $B$rG$0U$N&RM-8BB,EY6u4V!# (Bf $B$,&L@QJ,2DG="N (Bf_+ $B$H (Bf_- $B$O&L@QJ,2DG= (Bkyokoyoshida123@gmail.com
23252008/11/05These arithmetical high-order methods do not appear in any Japanesse, nor Chinese, nor Hindu, nor European, nor Mayan text on numbers.arithmonic <djesusg@gmail.com>
23232008/11/05Re: 測度空間(R,B(R),μ)でf(x)=x^2の時,∫_R fdμを計算せよchiaki@kit.ac.jp (Tsukamoto Chiaki)
23222008/11/05Re: (Ω,Σ,μ)を任意のσ有限測度空間。fがμ積分可能⇔f_+とf_-はμ積分可能chiaki@kit.ac.jp (Tsukamoto Chiaki)
23212008/11/05Re: $BB,EY6u4V (B(R,B(R), $B&L (B) $B$G (Bf(x)=x^2 $B$N;~ (B, $B"i (B_R fd $B&L$r7W;;$;$h (Bkyokoyoshida123@gmail.com
23202008/11/05Re: ( $B&8 (B, $B&2 (B, $B&L (B) $B$rG$0U$N&RM-8BB,EY6u4V!# (Bf $B$,&L@QJ,2DG="N (Bf_+ $B$H (Bf_- $B$O&L@QJ,2DG= (Bkyokoyoshida123@gmail.com
23192008/11/04Re: (v_1+v_2)(×)w=v_1(×)w + v_2(×)wの証明kono@ie.u-ryukyu.ac.jp (Shinji KONO)
23182008/11/03Re: 測度空間(R,B(R),μ)でf(x)=x^2の時,∫_R fdμを計算せよchiaki@kit.ac.jp (Tsukamoto Chiaki)
23172008/11/03Re: (Ω,Σ,μ)を任意のσ有限測度空間。fがμ積分可能⇔f_+とf_-はμ積分可能chiaki@kit.ac.jp (Tsukamoto Chiaki)
23162008/11/03Re: $BB,EY6u4V (B(R,B(R), $B&L (B) $B$G (Bf(x)=x^2 $B$N;~ (B, $B"i (B_R fd $B&L$r7W;;$;$h (Bkyokoyoshida123@gmail.com
23152008/11/03Re: ( $B&8 (B, $B&2 (B, $B&L (B) $B$rG$0U$N&RM-8BB,EY6u4V!# (Bf $B$,&L@QJ,2DG="N (Bf_+ $B$H (Bf_- $B$O&L@QJ,2DG= (Bkyokoyoshida123@gmail.com
23142008/11/02Re: (Ω,Σ,μ)を任意のσ有限測度空間。fがμ積分可能⇔f_+とf_-はμ積分可能chiaki@kit.ac.jp (Tsukamoto Chiaki)
23132008/11/02Re: (v_1+v_2)(×)w=v_1(×)w + v_2(×)wの証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
23122008/11/02Re: 測度空間(R,B(R),μ)でf(x)=x^2の時,∫_R fdμを計算せよchiaki@kit.ac.jp (Tsukamoto Chiaki)
23112008/11/02Re: (Ω,Σ,μ)を任意のσ有限測度空間。fがμ積分可能⇔f_+とf_-はμ積分可能chiaki@kit.ac.jp (Tsukamoto Chiaki)
23102008/11/02Re: 測度空間(R,B(R),μ)でf(x)=x^2の時,∫_R fdμ を計算せよkono@ie.u-ryukyu.ac.jp (Shinji KONO)
23092008/11/02Re: (v_1+v_2)( $B!_ (B)w=v_1( $B!_ (B)w + v_2( $B!_ (B)w $B$N>ZL@ (Bcchikakoo@yahoo.co.jp
23082008/11/02測度空間(R,B(R),μ)でf(x)=x^2の時,∫_R fdμを計算せよkyokoyoshida123@gmail.com
23072008/11/02(Ω,Σ,μ)を任意のσ有限測度空間。fがμ積分可能⇔f_+とf_-はμ積分可能kyokoyoshida123@gmail.com
23062008/10/27(v_1+v_2)(×)w=v_1(×)w + v_2(×)wという等式の証明cchikakoo@yahoo.co.jp
23052008/10/26Re: (v_1+v_2)(×)w=v_1(×)w + v_2(×)wの証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
23042008/10/26(v_1+v_2)(×)w=v_1(×)w + v_2(×)wという等式の証明cchikakoo@yahoo.co.jp
23032008/10/26Re: (v_1+v_2)(×)w=v_1(×)w + v_2(×)wの証明kono@ie.u-ryukyu.ac.jp (Shinji KONO)
23022008/10/26(v_1+v_2)(×)w=v_1(×)w + v_2(×)wの証明cchikakoo@yahoo.co.jp
23012008/10/26テンソル積での(v_1+v_2)(×)w=v_1(×)w + v_2(×)wの変形cchikakoo@yahoo.co.jp
23002008/10/26テンソル積での(v_1+v_2)(×)w=v_1(×)w + v_2(×)wの変形cchikakoo@yahoo.co.jp
22992008/10/22Re: $B@~7ABe?t$ND>OBJ,2r$NLdBj$G<ALd$G$9 (Bcchikakoo@yahoo.co.jp

Fnews-list 1.9(20180406) -- by Mizuno, MWE <mwe@ccsf.jp>
GnuPG Key ID = ECC8A735
GnuPG Key fingerprint = 9BE6 B9E9 55A5 A499 CD51 946E 9BDC 7870 ECC8 A735