3464 | 2011/08/27 | Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3463 | 2011/08/08 | Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3462 | 2011/08/02 | Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3461 | 2011/07/26 | Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3460 | 2011/07/22 | Re: ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3459 | 2011/07/18 | Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3458 | 2011/07/17 | Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3457 | 2011/07/11 | Re: ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3456 | 2011/07/08 | Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3455 | 2011/07/06 | Re: ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3454 | 2011/07/06 | Re: ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3453 | 2011/07/04 | Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3452 | 2011/07/04 | Re: Bernoulli数,∀n∈Nに対してB_{2n+1}=0となる事の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3451 | 2011/07/03 | Re: Σ_{n=1}^∞f_n(z)に於いて,f_n(z)が正則関数且つ広義一様収束すればΣ_{n=1}^∞f_n(z)も正則関数 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3450 | 2011/07/02 | Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3449 | 2011/07/01 | Re: ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3448 | 2011/06/30 | Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3447 | 2011/06/29 | Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明 | KyokoYoshida <kyokoyoshida123@gmail.com> |
3446 | 2011/06/27 | Re: Bernoulli数,∀n∈Nに対してB_{2n+1}=0となる事の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3445 | 2011/06/27 | Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3444 | 2011/06/27 | Re: Bernoulli $B?t (B, $B"O (Bn $B": (BN $B$KBP$7$F (BB_{2n+1}=0 $B$H$J$k;v$N>ZL@ (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3443 | 2011/06/27 | Re: Bernoulli $BB?9`<0 (B,B_n(0)=B_n $B$N>ZL@ (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3442 | 2011/06/27 | Re: L(s, $B&V (B)= $B&2 (B_{a=1}^N $B&V (B(a) $B&F (B_{amodN}(s) ( $BC"$7 (B, $B&V": (BDC(N),s $B": (BC) $B$r<($; (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3441 | 2011/06/27 | Re: $B&F (B(s),DL(s, $B&V (B),_{amodN(s)}, $B&F (B(s,x) $B$NJ#AGJ?LL>e$G$N@5B'@-!&M-M}7?@-!&2r@O@\B32DG=@-$N>ZL@ (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3440 | 2011/06/26 | Re: $B&F (B(s),DL(s, $B&V (B),_{amodN(s)}, $B&F (B(s,x) $B$NJ#AGJ?LL>e$G$N@5B'@-!&M-M}7?@-!&2r@O@\B32DG=@-$N>ZL@ (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3439 | 2011/06/23 | Re: Dirichlet指標の群での定義について | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3438 | 2011/06/23 | Re: ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3437 | 2011/06/23 | Re: Bernoulli数,∀n∈Nに対してB_{2n+1}=0となる事の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3436 | 2011/06/23 | Re: Bernoulli多項式,B_n(0)=B_nの証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3435 | 2011/06/23 | Re: Dirichlet $B;XI8$N72$G$NDj5A$K$D$$$F (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3434 | 2011/06/23 | Re: Dirichlet $B;XI8$N72$G$NDj5A$K$D$$$F (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3433 | 2011/06/23 | Re: $B&F (B(1-r,x)=-rB_r(x) (where x $B": (BC) $B$H&F (B_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N) $B$r<($; (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3432 | 2011/06/23 | Re: Bernoulli $B?t (B, $B"O (Bn $B": (BN $B$KBP$7$F (BB_{2n+1}=0 $B$H$J$k;v$N>ZL@ (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3431 | 2011/06/23 | Re: Bernoulli $B?t (B, $B"O (Bn $B": (BN $B$KBP$7$F (BB_{2n+1}=0 $B$H$J$k;v$N>ZL@ (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3430 | 2011/06/23 | Re: Bernoulli $BB?9`<0 (B,B_n(0)=B_n $B$N>ZL@ (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3429 | 2011/06/22 | Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3428 | 2011/06/22 | Re: L(s, $B&V (B) $B$NJ#AGJ?LLA4BN$X$NDj5A$N3HD%$K$D$$$F (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3427 | 2011/06/22 | Re: $B&F (B(s),DL(s, $B&V (B),_{amodN(s)}, $B&F (B(s,x) $B$NJ#AGJ?LL>e$G$N@5B'@-!&M-M}7?@-!&2r@O@\B32DG=@-$N>ZL@ (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3426 | 2011/06/21 | Re: L(s,χ)の複素平面全体への定義の拡張について | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3425 | 2011/06/21 | Re: L(s,χ)=Σ_{a=1}^N χ(a)ζ_{amodN}(s) (但し,χ∈DC(N),s∈C)を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3424 | 2011/06/21 | Re: Dirichlet指標の群での定義について | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3423 | 2011/06/21 | Re: L(s, $B&V (B) $B$NJ#AGJ?LLA4BN$X$NDj5A$N3HD%$K$D$$$F (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3422 | 2011/06/21 | Re: L(s, $B&V (B)= $B&2 (B_{a=1}^N $B&V (B(a) $B&F (B_{amodN}(s) ( $BC"$7 (B, $B&V": (BDC(N),s $B": (BC) $B$r<($; (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3421 | 2011/06/21 | Dirichlet指標の群での定義について | KyokoYoshida <kyokoyoshida123@gmail.com> |
3420 | 2011/06/20 | Re: L(s,χ)の複素平面全体への定義の拡張について | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3419 | 2011/06/20 | Re: L(s,χ)=Σ_{a=1}^N χ(a)ζ_{amodN}(s) (但し,χ∈DC(N),s∈C)を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3418 | 2011/06/20 | Re: ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3417 | 2011/06/20 | Re: Bernoulli多項式,B_n(0)=B_nの証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3416 | 2011/06/20 | Re: Bernoulli数,∀n∈Nに対してB_{2n+1}=0となる事の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3415 | 2011/06/20 | Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |