記事一覧

条件に一致する記事の数: 3953件

記事一覧へ

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80]
Date(投稿日時):Subject(見出し):From(投稿者):
34872012/05/28Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34862012/05/24Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34852012/05/23Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34842012/05/22Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34832012/05/22Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34822012/05/21Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34812012/05/18Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34802012/05/10Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34792012/04/29From the crest of Olivet...E Bmums <e447560@rppkn.com>
34782012/04/04Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34772012/04/01Gamma Sceintific UDT Instruments DigiWx Cunt on Callnobody@nowhere.com
34742012/01/04Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34732011/11/16リーマン予想のリーマン・ゼータ関数における0点の出現の規則性についてtanosey1417@kkh.biglobe.ne.jp
34722011/11/13鏡に映った自分の姿は左右逆転している?していない?tanosey1417@kkh.biglobe.ne.jp
34712011/11/13鏡像が二次元像だとしたら鏡像の奥行き感・立体感はどう説明すれば良いのか?tanosey1417@kkh.biglobe.ne.jp
34702011/11/13「鏡はなぜ左右のみを反転して上下を反転しないのか?」の間違いtanosey1417@kkh.biglobe.ne.jp
34692011/11/13鏡像反転の謎という鏡像問題に対する幾何学的解答tanosey1417@kkh.biglobe.ne.jp
34682011/11/13素数の再定義tanosey1417@kkh.biglobe.ne.jp
34672011/09/22Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34662011/09/16Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34652011/09/02Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34642011/08/27Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34632011/08/08Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34622011/08/02Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34612011/07/26Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34602011/07/22Re: ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せ
↑ リクエストされた記事
chiaki@kit.ac.jp (Tsukamoto Chiaki)
34592011/07/18Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34582011/07/17Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34572011/07/11Re: ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
34562011/07/08Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34552011/07/06Re: ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
34542011/07/06Re: ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
34532011/07/04Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34522011/07/04Re: Bernoulli数,∀n∈Nに対してB_{2n+1}=0となる事の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34512011/07/03Re: Σ_{n=1}^∞f_n(z)に於いて,f_n(z)が正則関数且つ広義一様収束すればΣ_{n=1}^∞f_n(z)も正則関数chiaki@kit.ac.jp (Tsukamoto Chiaki)
34502011/07/02Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34492011/07/01Re: ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
34482011/06/30Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34472011/06/29Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明KyokoYoshida <kyokoyoshida123@gmail.com>
34462011/06/27Re: Bernoulli数,∀n∈Nに対してB_{2n+1}=0となる事の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34452011/06/27Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34442011/06/27Re: Bernoulli $B?t (B, $B"O (Bn $B": (BN $B$KBP$7$F (BB_{2n+1}=0 $B$H$J$k;v$N>ZL@ (BKyokoYoshida <kyokoyoshida123@gmail.com>
34432011/06/27Re: Bernoulli $BB?9`<0 (B,B_n(0)=B_n $B$N>ZL@ (BKyokoYoshida <kyokoyoshida123@gmail.com>
34422011/06/27Re: L(s, $B&V (B)= $B&2 (B_{a=1}^N $B&V (B(a) $B&F (B_{amodN}(s) ( $BC"$7 (B, $B&V": (BDC(N),s $B": (BC) $B$r<($; (BKyokoYoshida <kyokoyoshida123@gmail.com>
34412011/06/27Re: $B&F (B(s),DL(s, $B&V (B),_{amodN(s)}, $B&F (B(s,x) $B$NJ#AGJ?LL>e$G$N@5B'@-!&M-M}7?@-!&2r@O@\B32DG=@-$N>ZL@ (BKyokoYoshida <kyokoyoshida123@gmail.com>
34402011/06/26Re: $B&F (B(s),DL(s, $B&V (B),_{amodN(s)}, $B&F (B(s,x) $B$NJ#AGJ?LL>e$G$N@5B'@-!&M-M}7?@-!&2r@O@\B32DG=@-$N>ZL@ (BKyokoYoshida <kyokoyoshida123@gmail.com>
34392011/06/23Re: Dirichlet指標の群での定義についてchiaki@kit.ac.jp (Tsukamoto Chiaki)
34382011/06/23Re: ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
34372011/06/23Re: Bernoulli数,∀n∈Nに対してB_{2n+1}=0となる事の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34362011/06/23Re: Bernoulli多項式,B_n(0)=B_nの証明chiaki@kit.ac.jp (Tsukamoto Chiaki)

Fnews-list 1.9(20180406) -- by Mizuno, MWE <mwe@ccsf.jp>
GnuPG Key ID = ECC8A735
GnuPG Key fingerprint = 9BE6 B9E9 55A5 A499 CD51 946E 9BDC 7870 ECC8 A735