2493 | 2009/03/02 | Re: R^d=R^{d_1} $B!_ (BR^{d_2} $B$H$9$k;~ (B,R^d $B$N%k%Y!<%0B,EY (Bm $B$O (Bm_1 $B!_ (Bm_2 $B$N40Hw2=$K$J$C$F$$$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2492 | 2009/03/02 | Re: X_1,X_2, $B!D (B,X_k $B$N@QB,EY$O=89gBN (BA={E_1 $B!_ (BE_2 $B!_!D!_ (BE_k;E_i $B": (BM_i} $B>e$N (Bpremeasure $B&L (B_0 $B$N3HD%$K$J$C$F$$$k;v$r3N$+$a$h (B | kyokoyoshida123@gmail.com |
2491 | 2009/03/02 | Re: $B&L (B $B$r (BBorel $BB,EY$H$9$k;~ (B, $B&L$,M-8B"N&W (B:f $B"* (BL(f)::= $B"i (B_a^b f(x)d $B&L (B(x) $B$O@~7AHF<LA|$r$J$9 (B | kyokoyoshida123@gmail.com |
2490 | 2009/03/02 | Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2489 | 2009/03/02 | Re: X_1,X_2,…,X_kの積測度は集合体A={E_1×E_2×…×E_k;E_i∈M_i}上のpremeasure μ_0の拡張になっている事を確かめよ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2488 | 2009/03/02 | Re: R^d\{0}の任意の開集合はR_+ × S^{d-1}の可算個の和集合で表される事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2487 | 2009/03/02 | Re: R^d=R^{d_1}×R^{d_2}とする時,R^dのルベーグ測度mはm_1×m_2の完備化になっている事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2486 | 2009/03/02 | Re: μ をBorel測度とする時, μが有限⇔ψ:f→L(f)::=∫_a^b f(x)dμ(x)は線形汎写像をなす | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2485 | 2009/03/01 | Re: R^d $B!@ (B{0} $B$NG$0U$N3+=89g$O (BR_+ $B!_ (B S^{d-1} $B$N2D;;8D$NOB=89g$GI=$5$l$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2484 | 2009/03/01 | Re: E $B$,G$0U (B} $B$N85$J$i (BE^{x_2} $B$O (Ba.e. $B&L (B_1 $B2DB, (B. $B&L (B_1(E^{x_2}) $B$O (Ba.e. $B&L (B_2 $B2DB, (B. $B99$K"i (B_{X_2} f(x_2)d $B&L (B_2(x)=lim[j $B"*!g (B] $B"i (B_{X_2}f_j(x_2)d $B&L (B_2(x) | kyokoyoshida123@gmail.com |
2483 | 2009/03/01 | Re: X_1,X_2, $B!D (B,X_k $B$N@QB,EY$O=89gBN (BA={E_1 $B!_ (BE_2 $B!_!D!_ (BE_k;E_i $B": (BM_i} $B>e$N (Bpremeasure $B&L (B_0 $B$N3HD%$K$J$C$F$$$k;v$r3N$+$a$h (B | kyokoyoshida123@gmail.com |
2482 | 2009/02/28 | Re: R^d=R^{d_1} $B!_ (BR^{d_2} $B$H$9$k;~ (B,R^d $B$N%k%Y!<%0B,EY (Bm $B$O (Bm_1 $B!_ (Bm_2 $B$N40Hw2=$K$J$C$F$$$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2481 | 2009/02/28 | Re: $B&L (B $B$r (BBorel $BB,EY$H$9$k;~ (B, $B&L$,M-8B"N&W (B:f $B"* (BL(f)::= $B"i (B_a^b f(x)d $B&L (B(x) $B$O@~7AHF<LA|$r$J$9 (B | kyokoyoshida123@gmail.com |
2480 | 2009/02/26 | Re: X_1,X_2,…,X_kの積測度は集合体A={E_1×E_2×…×E_k;E_i∈M_i}上のpremeasure μ_0の拡張になっている事を確かめよ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2479 | 2009/02/26 | Re: E $B$,G$0U (B} $B$N85$J$i (BE^{x_2} $B$O (Ba.e. $B&L (B_1 $B2DB, (B. $B&L (B_1(E^{x_2}) $B$O (Ba.e. $B&L (B_2 $B2DB, (B. $B99$K"i (B_{X_2} f(x_2)d $B&L (B_2(x)=lim[j $B"*!g (B] $B"i (B_{X_2}f_j(x_2)d $B&L (B_2(x) | kyokoyoshida123@gmail.com |
2478 | 2009/02/26 | Re: X_1,X_2, $B!D (B,X_k $B$N@QB,EY$O=89gBN (BA={E_1 $B!_ (BE_2 $B!_!D!_ (BE_k;E_i $B": (BM_i} $B>e$N (Bpremeasure $B&L (B_0 $B$N3HD%$K$J$C$F$$$k;v$r3N$+$a$h (B | kyokoyoshida123@gmail.com |
2477 | 2009/02/25 | Re: R^d\{0}の任意の開集合はR_+ × S^{d-1}の可算個の和集合で表される事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2476 | 2009/02/25 | Re: R^d=R^{d_1}×R^{d_2}とする時,R^dのルベーグ測度mはm_1×m_2の完備化になっている事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2475 | 2009/02/25 | Re: R^d $B!@ (B{0} $B$NG$0U$N3+=89g$O (BR_+ $B!_ (B S^{d-1} $B$N2D;;8D$NOB=89g$GI=$5$l$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2474 | 2009/02/25 | Re: R^d=R^{d_1} $B!_ (BR^{d_2} $B$H$9$k;~ (B,R^d $B$N%k%Y!<%0B,EY (Bm $B$O (Bm_1 $B!_ (Bm_2 $B$N40Hw2=$K$J$C$F$$$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2473 | 2009/02/25 | Re: μ をBorel測度とする時, μが有限⇔ψ:f→L(f)::=∫_a^b f(x)dμ(x)は線形汎写像をなす | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2472 | 2009/02/24 | Re: $B&L (B $B$r (BBorel $BB,EY$H$9$k;~ (B, $B&L$,M-8B"N&W (B:f $B"* (BL(f)::= $B"i (B_a^b f(x)d $B&L (B(x) $B$O@~7AHF<LA|$r$J$9 (B | kyokoyoshida123@gmail.com |
2471 | 2009/02/24 | Re: X_1,X_2,…,X_kの積測度は集合体A={E_1×E_2×…×E_k;E_i∈M_i}上のpremeasure μ_0の拡張になっている事を確かめよ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2470 | 2009/02/24 | Re: R^d=R^{d_1}×R^{d_2}とする時,R^dのルベーグ測度mはm_1×m_2の完備化になっている事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2469 | 2009/02/24 | Re: Eが任意}の元ならE^{x_2}はa.e.μ_1可測.μ_1(E^{x_2})はa.e.μ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2468 | 2009/02/24 | Re: Eが任意}の元ならE^{x_2}はa.e.μ_1可測.μ_1(E^{x_2})はa.e.μ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2467 | 2009/02/24 | Re: Eが任意の元ならE^{x_2}はa.e.μ_1可測.μ_1(E^{x_2})はa.e.μ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2466 | 2009/02/24 | Re: R^d\{0}の任意の開集合はR_+ × S^{d-1}の可算個の和集合で表される事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2465 | 2009/02/24 | Re: μ をBorel測度とする時, μが有限⇔ψ:f→L(f)::=∫_a^b f(x)dμ(x)は線形汎写像をなす | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2464 | 2009/02/24 | Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2463 | 2009/02/24 | Re: Eが任意}の元ならE^{x_2}はa.e.μ_1可測.μ_1(E^{x_2})はa.e.μ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | kyokoyoshida123@gmail.com |
2462 | 2009/02/24 | Re: Eが任意}の元ならE^{x_2}はa.e.μ_1可測.μ_1(E^{x_2})はa.e.μ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | kyokoyoshida123@gmail.com |
2461 | 2009/02/24 | Re: μ をBorel測度とする時, μが有限⇔ψ:f→L(f)::=∫_a^b f(x)dμ(x)は線形汎写像をなす | kyokoyoshida123@gmail.com |
2460 | 2009/02/23 | Eが任意}の元ならE^{x_2}はa.e.μ_1可測.μ_1(E^{x_2})はa.e.μ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | kyokoyoshida123@gmail.com |
2459 | 2009/02/23 | Re: f(x,y) $B$r (BR $B!_ (BR $B$G%k%Y!<%02DB,$JHsIi4X?t$H$9$k!#<!$N??56$rH=Dj$;$h (B | kyokoyoshida123@gmail.com |
2458 | 2009/02/22 | Re: EがA_{σδ}の元ならE^{x_2}はμ_1可測.μ_1(E^{x_2})はμ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2457 | 2009/02/22 | X_1,X_2,…,X_kの積測度は集合体A={E_1×E_2×…×E_k;E_i∈M_i}上のpremeasure μ_0の拡張になっている事を確かめよ | kyokoyoshida123@gmail.com |
2456 | 2009/02/22 | R^d=R^{d_1}×R^{d_2}とする時,R^dのルベーグ測度mはm_1×m_2の完備化になっている事を示せ | kyokoyoshida123@gmail.com |
2455 | 2009/02/22 | R^d\{0}の任意の開集合はR_+ × S^{d-1}の可算個の和集合で表される事を示せ | kyokoyoshida123@gmail.com |
2454 | 2009/02/22 | Re: 4 $BCJ3,$G%k%Y!<%0@QJ,$r9=C[$;$h!# (B | kyokoyoshida123@gmail.com |
2453 | 2009/02/22 | μ をBorel測度とする時, μが有限⇔ψ:f→L(f)::=∫_a^b f(x)dμ(x)は線形汎写像をなす | kyokoyoshida123@gmail.com |
2452 | 2009/02/21 | Re: E $B$, (BA_{ $B&R&D (B} $B$N85$J$i (BE^{x_2} $B$O&L (B_1 $B2DB, (B. $B&L (B_1(E^{x_2}) $B$O&L (B_2 $B2DB, (B. $B99$K"i (B_{X_2} f(x_2)d $B&L (B_2(x)=lim[j $B"*!g (B] $B"i (B_{X_2}f_j(x_2)d $B&L (B_2(x) | kyokoyoshida123@gmail.com |
2451 | 2009/02/19 | Re: EがA_{σδ}の元ならE^{x_2}はμ_1可測.μ_1(E^{x_2})はμ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2450 | 2009/02/19 | Re: 4段階でルベーグ積分を構築せよ。 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2449 | 2009/02/19 | Re: E $B$, (BA_{ $B&R&D (B} $B$N85$J$i (BE^{x_2} $B$O&L (B_1 $B2DB, (B. $B&L (B_1(E^{x_2}) $B$O&L (B_2 $B2DB, (B. $B99$K"i (B_{X_2} f(x_2)d $B&L (B_2(x)=lim[j $B"*!g (B] $B"i (B_{X_2}f_j(x_2)d $B&L (B_2(x) | kyokoyoshida123@gmail.com |
2448 | 2009/02/18 | Re: E $B$, (BA_{ $B&R&D (B} $B$N85$J$i (BE^{x_2} $B$O&L (B_1 $B2DB, (B. $B&L (B_1(E^{x_2}) $B$O&L (B_2 $B2DB, (B. $B99$K"i (B_{X_2} f(x_2)d $B&L (B_2(x)=lim[j $B"*!g (B] $B"i (B_{X_2}f_j(x_2)d $B&L (B_2(x) | kyokoyoshida123@gmail.com |
2447 | 2009/02/18 | Re: 4 $BCJ3,$G%k%Y!<%0@QJ,$r9=C[$;$h!# (B | kyokoyoshida123@gmail.com |
2446 | 2009/02/16 | Re: ∫_(R^d)|f(x)|dx=∫[0..∞]m(E_α)dα(但し,mはルベーグ測度)となる事示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2445 | 2009/02/16 | Re: EがA_{σδ}の元ならE^{x_2}はμ_1可測.μ_1(E^{x_2})はμ_2可測.更に∫_{X_2} f(x_2)dμ_2(x)=lim[j→∞]∫_{X_2}f_j(x_2)dμ_2(x) | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2444 | 2009/02/16 | Re: 4段階でルベーグ積分を構築せよ。 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |