記事一覧

条件に一致する記事の数: 3953件

記事一覧へ

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220]
Date(投稿日時):Subject(見出し):From(投稿者):
25132009/03/05Re: E $B$, (BA_{ $B&R&D (B} $B$N85$J$i (BE^{x_2} $B$O&L (B_1 $B2DB, (B. $B&L (B_1(E^{x_2}) $B$O&L (B_2 $B2DB, (B. $B99$K"i (B_{X_2} f(x_2)d $B&L (B_2(x)=lim[j $B"*!g (B] $B"i (B_{X_2}f_j(x_2)d $B&L (B_2(x)kyokoyoshida123@gmail.com
25122009/03/05Re: R^d $B!@ (B{0} $B$NG$0U$N3+=89g$O (BR_+ $B!_ (B S^{d-1} $B$N2D;;8D$NOB=89g$GI=$5$l$k;v$r<($; (Bkyokoyoshida123@gmail.com
25112009/03/05Re: X_1,X_2,…,X_kの積測度は集合体A={E_1×E_2×…×E_k;E_i∈M_i}上のpremeasure μ_0の拡張になっている事を確かめよchiaki@kit.ac.jp (Tsukamoto Chiaki)
25102009/03/05Re: R^d=R^{d_1}×R^{d_2}とする時,R^dのルベーグ測度mはm_1×m_2の完備化になっている事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
25092009/03/05Re: μ をBorel測度とする時, μが有限⇔ψ:f→L(f)::=∫_a^b f(x)dμ(x)は線形汎写像をなすchiaki@kit.ac.jp (Tsukamoto Chiaki)
25082009/03/05Re: X_1,X_2, $B!D (B,X_k $B$N@QB,EY$O=89gBN (BA={E_1 $B!_ (BE_2 $B!_!D!_ (BE_k;E_i $B": (BM_i} $B>e$N (Bpremeasure $B&L (B_0 $B$N3HD%$K$J$C$F$$$k;v$r3N$+$a$h (Bkyokoyoshida123@gmail.com
25072009/03/04Re: R^d=R^{d_1} $B!_ (BR^{d_2} $B$H$9$k;~ (B,R^d $B$N%k%Y!<%0B,EY (Bm $B$O (Bm_1 $B!_ (Bm_2 $B$N40Hw2=$K$J$C$F$$$k;v$r<($; (Bkyokoyoshida123@gmail.com
25062009/03/04Re: $B&L (B $B$r (BBorel $BB,EY$H$9$k;~ (B, $B&L$,M-8B"N&W (B:f $B"* (BL(f)::= $B"i (B_a^b f(x)d $B&L (B(x) $B$O@~7AHF<LA|$r$J$9 (Bkyokoyoshida123@gmail.com
25052009/03/03Re: X_1,X_2,…,X_kの積測度は集合体A={E_1×E_2×…×E_k;E_i∈M_i}上のpremeasure μ_0の拡張になっている事を確かめよchiaki@kit.ac.jp (Tsukamoto Chiaki)
25042009/03/03Re: μ をBorel測度とする時, μが有限⇔ψ:f→L(f)::=∫_a^b f(x)dμ(x)は線形汎写像をなすchiaki@kit.ac.jp (Tsukamoto Chiaki)
25022009/03/03Re: f(x_1,x_2)がμ_1×μ_2可積ならa.e.x_2∈X_2でf(x_1,x_2)はμ_1可積chiaki@kit.ac.jp (Tsukamoto Chiaki)
25012009/03/03Re: X_1,X_2, $B!D (B,X_k $B$N@QB,EY$O=89gBN (BA={E_1 $B!_ (BE_2 $B!_!D!_ (BE_k;E_i $B": (BM_i} $B>e$N (Bpremeasure $B&L (B_0 $B$N3HD%$K$J$C$F$$$k;v$r3N$+$a$h (Bkyokoyoshida123@gmail.com
25002009/03/03Re: $B&L (B $B$r (BBorel $BB,EY$H$9$k;~ (B, $B&L$,M-8B"N&W (B:f $B"* (BL(f)::= $B"i (B_a^b f(x)d $B&L (B(x) $B$O@~7AHF<LA|$r$J$9 (Bkyokoyoshida123@gmail.com
24992009/03/03f(x_1,x_2)がμ_1×μ_2可積ならa.e.x_2∈X_2でf(x_1,x_2)はμ_1可積kyokoyoshida123@gmail.com
24982009/03/02Re: X_1,X_2,…,X_kの積測度は集合体A={E_1×E_2×…×E_k;E_i∈M_i}上のpremeasure μ_0の拡張になっている事を確かめよchiaki@kit.ac.jp (Tsukamoto Chiaki)
24972009/03/02Re: R^d\{0}の任意の開集合はR_+ × S^{d-1}の可算個の和集合で表される事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
24962009/03/02Re: R^d=R^{d_1}×R^{d_2}とする時,R^dのルベーグ測度mはm_1×m_2の完備化になっている事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
24952009/03/02Re: μ をBorel測度とする時, μが有限⇔ψ:f→L(f)::=∫_a^b f(x)dμ(x)は線形汎写像をなすchiaki@kit.ac.jp (Tsukamoto Chiaki)

Fnews-list 1.9(20180406) -- by Mizuno, MWE <mwe@ccsf.jp>
GnuPG Key ID = ECC8A735
GnuPG Key fingerprint = 9BE6 B9E9 55A5 A499 CD51 946E 9BDC 7870 ECC8 A735