記事一覧

条件に一致する記事の数: 3953件

記事一覧へ

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80]
Date(投稿日時):Subject(見出し):From(投稿者):
26672009/04/12Re: Bをあるl≦kについて2^-l≦diamB<2^{-l+1}を満足する被覆B~内の球とすると,Bは高々c3^{k-l}個のk世代の頂点を含むchiaki@kit.ac.jp (Tsukamoto Chiaki)
26662009/04/12Re: Sierphinski triangleはα=ln3/ln2のHaursdorff次元を持つ事示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
26652009/04/12Re: γがrectifiable⇔dimγ([a,b]))=1chiaki@kit.ac.jp (Tsukamoto Chiaki)
26642009/04/11Koch曲線を調べていて幾つか質問がありますkyokoyoshida123@gmail.com
26632009/04/11Bをあるl≦kについて2^-l≦diamB<2^{-l+1}を満足する被覆B~内の球とすると,Bは高々c3^{k-l}個のk世代の頂点を含むkyokoyoshida123@gmail.com
26622009/04/11Re: Sierphinski triangle $B$O&A (B=ln3/ln2 $B$N (BHaursdorff $B<!85$r;}$D;v<($; (Bkyokoyoshida123@gmail.com
26612009/04/11Re: $B&C$, (Brectifiable $B"N (Bdim $B&C (B([a,b]))=1kyokoyoshida123@gmail.com
26602009/04/10Re: Sierphinski triangleはα=ln3/ln2のHaursdorff次元を持つ事示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
26592009/04/10Re: γがrectifiable⇔dimγ([a,b]))=1chiaki@kit.ac.jp (Tsukamoto Chiaki)
26582009/04/10Sierphinski triangleはα=ln3/ln2のHaursdorff次元を持つ事示せkyokoyoshida123@gmail.com
26572009/04/10γがrectifiable⇔dimγ([a,b]))=1kyokoyoshida123@gmail.com
26562009/04/09Re: 一次元実数空間RでBorel集合EのHausdorff測度とLebesgue測度が等しい事の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
26552009/04/09Re: f∈Hom(Z_30,G),#G=24の時,f(Z_30)を(同型を除いて)全て決定せよchiaki@kit.ac.jp (Tsukamoto Chiaki)
26542009/04/09Re: f(x)=x^k(kは自然数)でm_α(E)=0⇒m_α(f(E))=0 ならdim(E)=dimf(E)を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
26532009/04/09Re: R^d内でm_αをα次元Hausdorff測度とする。(R^d,B(R^d),m_α)はσ有限でない事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
26522009/04/09Re: Canto-Lebesgue関数では指数γ=ln2/ln3でLipschitz条件を満たす事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
26512009/04/09Re: $B0l<!85<B?t6u4V (BR $B$G (BBorel $B=89g (BE $B$N (BHausdorff $BB,EY$H (BLebesgue $BB,EY$,Ey$7$$;v$N>ZL@ (Bkyokoyoshida123@gmail.com
26502009/04/09Re: f $B": (BHom(Z_30,G),#G=24 $B$N;~ (B,f(Z_30) $B$r (B( $BF17?$r=|$$$F (B) $BA4$F7hDj$;$h (Bkyokoyoshida123@gmail.com
26492009/04/09Re: f(x)=x^k(k $B$O<+A3?t (B) $B$G (Bm_ $B&A (B(E)=0 $B"M (Bm_ $B&A (B(f(E))=0 $B$J$i (Bdim(E)=dimf(E) $B$r<($; (Bkyokoyoshida123@gmail.com
26482009/04/09Re: R^d $BFb$G (Bm_ $B&A$r&A<!85 (BHausdorff $BB,EY$H$9$k!# (B(R^d,B(R^d),m_ $B&A (B) $B$O&RM-8B$G$J$$;v$r<($; (Bkyokoyoshida123@gmail.com
26472009/04/09Re: Canto-Lebesgue $B4X?t$G$O;X?t&C (B=ln2/ln3 $B$G (BLipschitz $B>r7o$rK~$?$9;v$r<($; (Bkyokoyoshida123@gmail.com
26462009/04/08Re: Eを開球で覆って定義した外測度とLebesgue外測度とが等しくなる事の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
26452009/04/08Re: 一次元実数空間RでBorel集合EのHausdorff測度とLebesgue測度が等しい事の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
26432009/04/08Re: (G,+)はアーベル,G_2:={g∈G;g+g=0}の時,次を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
26422009/04/08Re: Hausdorff $BB,EY$G$N (BLipschitz $B>r7o$NL?Bj (B(i) m_ $B&B (B(f(E)) $B!e (BM^ $B&B (Bm_ $B&A (B(E) if $B&B (B= $B&A (B/ $B&C (B. (ii) $B!! (Bdimf(E) $B!e (B1/ $B&C (BdimE.kyokoyoshida123@gmail.com
26412009/04/08Re: E $B$r3+5e$GJ$$C$FDj5A$7$?30B,EY$H (BLebesgue $B30B,EY$H$,Ey$7$/$J$k;v$N>ZL@ (Bkyokoyoshida123@gmail.com
26402009/04/08Re: (G,+) $B$O%"!<%Y%k (B,G_2:={g $B": (BG;g+g=0} $B$N;~ (B, $B<!$r<($; (Bkyokoyoshida123@gmail.com
26392009/04/08一次元実数空間RでBorel集合EのHausdorff測度とLebesgue測度が等しい事の証明kyokoyoshida123@gmail.com
26382009/04/07Re: singlarとabsoultely continuousについての真偽判定chiaki@kit.ac.jp (Tsukamoto Chiaki)
26372009/04/07Re: singlar $B$H (Babsoultely continuous $B$K$D$$$F$N??56H=Dj (Bkyokoyoshida123@gmail.com
26362009/04/07Re: 4 $B<!BP>N72 (BS_4 $B$H (B5 $B<!BP>N72 (BS_5 $B$G$N%7%m!< (B2 $BItJ,72$H%7%m!< (B3 $BItJ,72$r5a$a$h (Bkyokoyoshida123@gmail.com
26352009/04/06Re: f(x)=x^k(kは自然数)でm_α(E)=0⇒m_α(f(E))=0 ならdim(E)=dimf(E)を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
26342009/04/06Re: f∈Hom(Z_30,G),#G=24の時,f(Z_30)を(同型を除いて)全て決定せよchiaki@kit.ac.jp (Tsukamoto Chiaki)
26332009/04/06Re: R^d内でm_αをα次元Hausdorff測度とする。(R^d,B(R^d),m_α)はσ有限でない事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
26322009/04/06Re: Canto-Lebesgue関数では指数γ=ln2/ln3でLipschitz条件を満たす事を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
26312009/04/06Re: Hausdorff測度でのLipschitz条件の命題(i) m_β(f(E))≦M^βm_α(E) if β=α/γ. (ii) dimf(E)≦1/γdimE.chiaki@kit.ac.jp (Tsukamoto Chiaki)
26302009/04/06Re: Eを開球で覆って定義した外測度とLebesgue外測度とが等しくなる事の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
26292009/04/06f∈Hom(Z_30,G),#G=24の時,f(Z_30)を(同型を除いて)全て決定せよkyokoyoshida123@gmail.com
26282009/04/06f(x)=x^k(kは自然数)でm_α(E)=0⇒m_α(f(E))=0 ならdim(E)=dimf(E)を示せkyokoyoshida123@gmail.com
26272009/04/06R^d内でm_αをα次元Hausdorff測度とする。(R^d,B(R^d),m_α)はσ有限でない事を示せkyokoyoshida123@gmail.com
26262009/04/06Canto-Lebesgue関数では指数γ=ln2/ln3でLipschitz条件を満たす事を示せkyokoyoshida123@gmail.com
26252009/04/06Hausdorff測度でのLipschitz条件の命題(i) m_β(f(E))≦M^βm_α(E) if β=α/γ. (ii) dimf(E)≦1/γdimE.kyokoyoshida123@gmail.com
26242009/04/05Eを開球で覆って定義した外測度とLebesgue外測度とが等しくなる事の証明kyokoyoshida123@gmail.com
26232009/04/03Re: singlarとabsoultely continuousについての真偽判定chiaki@kit.ac.jp (Tsukamoto Chiaki)
26222009/04/03Re: (G,+)はアーベル,G_2:={g∈G;g+g=0}の時,次を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
26212009/04/03Re: 4次対称群S_4と5次対称群S_5でのシロー2部分群とシロー3部分群を求めよchiaki@kit.ac.jp (Tsukamoto Chiaki)
26202009/04/03Re: (G,+) $B$O%"!<%Y%k (B,G_2:={g $B": (BG;g+g=0} $B$N;~ (B, $B<!$r<($; (Bkyokoyoshida123@gmail.com
26192009/04/03Re: singlar $B$H (Babsoultely continuous $B$K$D$$$F$N??56H=Dj (Bkyokoyoshida123@gmail.com
26182009/04/03Re: 4 $B<!BP>N72 (BS_4 $B$H (B5 $B<!BP>N72 (BS_5 $B$G$N%7%m!< (B2 $BItJ,72$H%7%m!< (B3 $BItJ,72$r5a$a$h (Bkyokoyoshida123@gmail.com
26172009/04/03Re: 0 $B!b (Ba $B": (BR: $B4D$J$i (Baba=a $B$J$k (Bb $B": (BR $B$,0l0UE*$KB8:_$9$k;~ (B,R $B$O@00h$G$"$k;v$r<($; (Bkyokoyoshida123@gmail.com

Fnews-list 1.9(20180406) -- by Mizuno, MWE <mwe@ccsf.jp>
GnuPG Key ID = ECC8A735
GnuPG Key fingerprint = 9BE6 B9E9 55A5 A499 CD51 946E 9BDC 7870 ECC8 A735