3166 | 2010/11/05 | Re: Legendre $B$N (B2 $BJ?J}?t$NOB$NDjM} (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3165 | 2010/11/04 | Re: 楕円曲線y^2=x^3+x の解は(0,0)だけである事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3164 | 2010/11/04 | 楕円曲線y^2=x^3+x の解は(0,0)だけである事を示せ | KyokoYoshida <kyokoyoshida123@gmail.com> |
3163 | 2010/11/01 | Re: Legendreの2平方数の和の定理 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3162 | 2010/10/30 | Legendreの2平方数の和の定理 | KyokoYoshida <kyokoyoshida123@gmail.com> |
3161 | 2010/10/26 | Re: Gaussian Prime Theorem $B$NI,MW@-$N>ZL@ (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3160 | 2010/10/22 | Re: Gaussian Prime Theoremの必要性の証明 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3159 | 2010/10/21 | Gaussian Prime Theoremの必要性の証明 | KyokoYoshida <kyokoyoshida123@gmail.com> |
3158 | 2010/10/21 | Gaussian Prime Theoremの必要性の証明 | KyokoYoshida <kyokoyoshida123@gmail.com> |
3157 | 2010/10/12 | Re: 合同式 x^2≡-1 (mod 5^k) の解を求めよ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3156 | 2010/10/10 | Re: $B9gF1<0 (B x^2 $B"a (B-1 (mod 5^k) $B$N2r$r5a$a$h (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3155 | 2010/09/27 | Re: 合同式 x^2≡-1 (mod 5^k) の解を求めよ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3153 | 2010/09/27 | Re: as+bt=1 ( $BC"$7 (B,a,b,s,t $B": (BZ) $B$G (Ba,s $B$O6v?t (B, b,t $B$O4q?t$N;~ (B,z:=a+bi,w:=a-bi,u:=c+di,v:=e+fi( $BC"$7 (Bc,d,e,f $B": (BZ) $B$HCV$/$H (B(zu+wv)^2n=z^nU+z~^nV $B$G (BC $B"; (BU,V $B$O@0?t78?t$H$J$k;v$r<($; (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3152 | 2010/09/26 | Re: $B9gF1<0 (B x^2 $B"a (B-1 (mod 5^k) $B$N2r$r5a$a$h (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3151 | 2010/09/23 | a test posting | Ng Spim <ng@spim.woeishyang.com> |
3150 | 2010/09/13 | Re: as+bt=1 (但し,a,b,s,t∈Z)でa,sは偶数, b,tは奇数の時,z:=a+bi,w:=a-bi,u:=c+di,v:=e+fi(但しc,d,e,f∈Z)と置くと(zu+wv)^2n=z^nU+z~^nVでC∋U,Vは整数係数となる事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3149 | 2010/09/13 | Re: cond(ρ_3)<3は本当に言える? | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3148 | 2010/09/12 | as+bt=1 (但し,a,b,s,t∈Z)でa,sは偶数, b,tは奇数の時,z:=a+bi,w:=a-bi,u:=c+di,v:=e+fi(但しc,d,e,f∈Z)と置くと(zu+wv)^2n=z^nU+z~^nVでC∋U,Vは整数係数となる事を示せ | KyokoYoshida <kyokoyoshida123@gmail.com> |
3147 | 2010/09/12 | Re: cond( $B&Q (B_3)<3 $B$OK\Ev$K8@$($k (B? | KyokoYoshida <kyokoyoshida123@gmail.com> |
3146 | 2010/09/10 | Re: 合同式 x^2≡-1 (mod 5^k) の解を求めよ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3145 | 2010/09/10 | 合同式 x^2≡-1 (mod 5^k) の解を求めよ | KyokoYoshida <kyokoyoshida123@gmail.com> |
3144 | 2010/09/08 | Re: cond(ρ_3)<3は本当に言える? | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3143 | 2010/09/08 | Re: E_αを集合(但し, α∈A, #A=アレフ_1). その時, Π_{α∈A}E_α = ∩_{α∈A}E_α | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3142 | 2010/09/08 | Re: E_ $B&A$r=89g (B( $BC"$7 (B, $B&A": (BA, #A= $B%"%l%U (B_1). $B$=$N;~ (B, $B&0 (B_{ $B&A": (BA}E_ $B&A (B = $B"A (B_{ $B&A": (BA}E_ $B&A (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3141 | 2010/09/08 | cond(ρ_3)<3は本当に言える? | KyokoYoshida <kyokoyoshida123@gmail.com> |
3140 | 2010/08/25 | リーマン予想の謎はオイラー積の公式の中に隠されていた | TANOSeY研究所 <yjtns@mail.goo.ne.jp> |
3139 | 2010/08/23 | Re: E_αを集合(但し, α∈A, #A=アレフ_1). その時, Π_{α∈A}E_α = ∩_{α∈A}E_α | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
3138 | 2010/08/20 | Re: E_ $B&A$r=89g (B( $BC"$7 (B, $B&A": (BA, #A= $B%"%l%U (B_1). $B$=$N;~ (B, $B&0 (B_{ $B&A": (BA}E_ $B&A (B = $B"A (B_{ $B&A": (BA}E_ $B&A (B | KyokoYoshida <kyokoyoshida123@gmail.com> |
3137 | 2010/08/18 | Re: E_αを集合(但し, α∈A, #A=アレフ_1). その時, Π_{α∈A}E_α = ∩_{α∈A}E_α | chiaki@kit.ac.jp (Tsukamoto Chiaki) |