AcosΘ ーBsinΘ  =  C

e^(iΘ) = cosΘ +isinΘ
e^(-iΘ) = cosΘ ーisinΘ

 A(e^(iΘ)+e^(-iΘ))ーB(e^(iΘ)ーe^(-iΘ))/ i =  2C
(A+ iB)e^(iΘ)+(Aー iB)e^(-iΘ) =  2C
e^(iΘ) = X
(Aー iB) X^2ー2CX+(Aー iB) =  0
X = [ C +−√(C^2−(A+ iB)(Aー iB))]/(Aー iB)
 = [ C +−√(C^2−A^2−B^2)]/(Aー iB)
 = [ C +−√(C^2−A^2−B^2)](A+ iB)/(A^2+B^2)
C^2 = A^2+B^2+R^2とすると
R^2≧0の場合
= [ C +−|R|](A+ iB)/(A^2+B^2)
cosΘ
 = [ C +−|R|]A/(A^2+B^2)

R^2<0の場合
= [ C +−i|R|](A+ iB)/(A^2+B^2)
cosΘ
 = [ CA −+|R|B]/(A^2+B^2)

C^2≧A^2+B^2の場合
Θ
 =arccos([ C+−√(C^2−A^2−B^2)]A/(A^2+B^2))
C^2<A^2+B^2の場合
Θ
 =arccos([ CA−+B√(A^2+B^2−C^2)]/(A^2+B^2))