Re: Maxwell's and Faraday's formulations of induction
Can you send me a copy or a web link to Faradays letter that was to be
opened after 100 years of his death, please.
Kind regards, Lee Pugh
"Sergey Karavashkin" <selftrans@yandex.ru> wrote in message
news:a42650fc.0408182223.13cc9cbf@posting.google.com...
> vktamhane12@rediffmail.com (V.K.Tamhane) wrote in message
news:<9d62a326.0408152216.7082ef2d@posting.google.com>...
> > selftrans@yandex.ru (Sergey Karavashkin) wrote in message
news:<a42650fc.0408140220.2005f522@posting.google.com>...
> > > You have taken great efforts to prove the basic and fundamental
> > > > mechanisms and certainly differentiated between the two actions
> > > > responsible for the magnetic field based electromotive force.
> > >
> > > Dear Mr Tamhane, how exactly you noted the connection between the
> > > mathematical and physical formalism in comprehension of deep
> > > underpinning of processes in nature. I from my side can only add that
> > > the mathematical formalism can be true even with some incorrect
> > > phenomenology. We see many examples in today physics based on the
> > > principle properly formulated by Feynman: "Philosophers try to tell of
> > > the nature without mathematics. I try to describe the nature
> > > mathematically".
> >
> > How can nature be described mathematiclly when by nature we mean
> > physical phenomena? This is something impossible. Concepts cannot be
> > outcome derived from mathematical equations. Maxwell did predict EM
> > wave but his mathematical treatment was based on solid foundation of
> > aether. When aether goes so also the wave. What you said is true that
> > without mathematical equations physics is incomplete. However
> > mechanism of the physical phenomenon is of primary importance and I
> > must say very difficult to come by.
> > By calling those indulging in verbose logic philosophoers
> > and not physicists, Feynman is degrading improtance of concepts. No!
> > Excellent work can be done without mathematics. Faraday is an immortal
> > example.
> >
> > Rest of what you said, I snip because I fully agree with it.
> > Give me some time to get acquainted with your work. Thanks.
>
>
> Dear Mr Tamhane,
>
> I fully agree with you, and first of all that Faraday is really
> perfect, immortal example of checked phenomenology and searching mind.
> In addition, I would like to recall Faraday's letter which he
> bequeathed to open in 100 years after his death and in which he was
> first who understood that the speed of light is finite. This does not
> disparage a least the merits of Maxwell and Hertz either of Eichenwald
> experiments, but it speaks of Faraday genius.
> I would like to mark that Maxwell, if we follow just Maxwell, also
> understood the versatile and complicated processes in EM field much
> deeper than is proposed now as a marc. The system of four equations is
> not Maxwellian. Different sources tell, Maxwell had 12 or 14
> equations. Four equations are just like "Saga of Foresights" in the
> last page of newspaper. And this is Hertz' or Heaviside's, but not
> Maxwell's. I am far from mind to belittle these scientists, but having
> shortened the general phenomenology, they shortened the meaning,
> pursuing the simplicity like in Newtonian equations. It worsened the
> situation that Maxwell, Hertz and Heaviside had available only
> conservation laws for stationary fields and had not any experience,
> how to work with delayed potentials. Should they have our conservation
> theorems for dynamic fields to which I referred you, Maxwell would not
> need to foresee the magnetoelectric induction law which completes the
> general systems of equations. He would simply derive this law as a
> corollary from the dynamic conservation theorem of circulation of
> vector. But the fact that he predicted, even without all other what
> Maxwell had done during his short life, makes him immortal. At the
> same time, prediction cannot fully solve the problems of
> phenomenology. The phenomenology is created as a symbiosis of physical
> and mathematical formalism. If we ground only on philosophy, it is too
> easy to slip into sophistry and philosophical fabrication. Operating
> with mere mathematics, it is impossible to catch the nut of effect and
> the way to improve the mathematical formalism. It is too easy to pass
> to manipulations with mathematical symbols and to vary the statement
> of problem, passing, just as in the first case, to a self-confident
> abstraction. But without mathematics we cannot build a harmonious
> conception. And just the fact that Maxwell had not a complete set of
> initial data to formulate the integral phenomenology has caused the
> complicacy and, finally, incompleteness of his conception. This was
> not his guilt, it was a circumstance that experimental physics and
> mathematical formalism of that time were not ready for solutions of
> such level. And pity that many generations of scientists clearly saw
> the problems of this system of equations and obeyed Maxwell authority
> whose name this system bears, but they did not dare to enter this
> labyrinth. I met also here in the newsgroups the colleagues who lost
> the ability to think independently when approaching to the entrance to
> this labyrinth.
> This is the trouble of today physics that Relativity by Einstein and
> his followers has brought to physics not so much new conception (all
> their works are a patch-work quilt of separate unfinished works by
> classical physicists) as the methodology to manipulate with
> mathematics. Not in vain Feynman whom I cited in his following
> lectures is surprised that, despite all bricks seem to be present, the
> result does not tally. Their so-called discoveries are such for one
> day, they fail after next experiments. And the problem is just that
> mathematical formalism has to strongly follow the phenomenology stated
> in the problem. If we have well studied phenomenology, the
> mathematical formalism enables us to improve many aspects of
> phenomenology and to operate with the help of tables, plots and
> numerical predictions. But the mathematical formalism is not able to
> exceed the limits of phenomenology, and if someone forced it, there
> comes to force a known rule of extrapolation: the farther from
> reliably checked results the lower reliability of prediction. To
> develop, we have to improve the phenomenology which would
> automatically improve the modelling equations and will allow us to
> find the solutions exceeding the limits of today phenomenology. This
> is the way as I see it - the only way of development which brings a
> real and long-lasting success.
> As an example I would mention Newton's equations. If we work with
> small velocities, these equations give a complete and exact pattern of
> processes. In my discussions with colleagues I multiply encountered
> the attempts, so to say, to re-formulate or doubt Newtonian system in
> the domain where it is true. Vain attempts. It remains impeccable and
> closed as the mathematical formalism. But if we pass to high
> velocities, the action and counter-action become inequal - the basic
> principle on which the Newton's formalism is grounded is broken. This
> naturally changes the modelling equations and solutions. Lorentz
> understood it well, but due to definite circumstances he could not
> finally formulate it. While Einstein simply primitivised Lorentz
> equations and made so a bad service to physics. Some time we need to
> sort these things out. The more that the issues of magnetic field
> nature and of gravitation lay in these heaps. We tend this direction,
> as possible.
> On the other hand, as I already said, the phenomenological conception
> without mathematics is doomed. We can recall Descartes. He formulated
> all laws of dynamics "on his fingers", before Newton! But he had not a
> trifle - he did not know the infinitesimals, though we cannot think
> him mathematically ignorant, can we? ;-) And Newton would not succeed
> to write his Principia, if not the conception of infinitesimals which
> he had due to his teacher. The matter is, the outcome to some new
> phenomenology is always caused by the developed new class of modelled
> equations. Having these equations unsolved, it is difficult, or rather
> impossible to correct our penetration into the unknown area. See,
> Faraday with all his genius carried out his experiments with unipolar
> motor - one step to a generator! - but he has not this step done,
> because all his work was "on fingers". Mathematics did not follow his
> phenomenology, and he was unable to make an advanced prediction. And
> when Maxwell developed his mathematics, though complicated and
> imperfect but allowing to calculate, it started the time of great
> technological discoveries. And we can illustrate this connection
> between the phenomenology and mathematical formalism by many facts
> from the history of physics. So I am saying namely of symbiosis, and
> in no case of chaotic turns of physics and mathematics. Such
> "sequence" can create only monsters. The phenomenology and first basic
> corroborating experiments have to precede. Then mathematical modelling
> and new experiments have to be done, which with numerical
> characteristics will corroborate this model correct and in this way
> open the way for further development of phenomenology. Such is the way
> which we see and our experience says it is successful.
>
> I would be interesting to hear your opinion.
>
> All the best,
>
> Sergey
Fnews-brouse 1.9(20180406) -- by Mizuno, MWE <mwe@ccsf.jp>
GnuPG Key ID = ECC8A735
GnuPG Key fingerprint = 9BE6 B9E9 55A5 A499 CD51 946E 9BDC 7870 ECC8 A735