記事一覧

条件に一致する記事の数: 3953件

記事一覧へ

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80]
Date(投稿日時):Subject(見出し):From(投稿者):
34492011/07/01Re: ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
34482011/06/30Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34472011/06/29Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明KyokoYoshida <kyokoyoshida123@gmail.com>
34462011/06/27Re: Bernoulli数,∀n∈Nに対してB_{2n+1}=0となる事の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34452011/06/27Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34442011/06/27Re: Bernoulli $B?t (B, $B"O (Bn $B": (BN $B$KBP$7$F (BB_{2n+1}=0 $B$H$J$k;v$N>ZL@ (BKyokoYoshida <kyokoyoshida123@gmail.com>
34432011/06/27Re: Bernoulli $BB?9`<0 (B,B_n(0)=B_n $B$N>ZL@ (BKyokoYoshida <kyokoyoshida123@gmail.com>
34422011/06/27Re: L(s, $B&V (B)= $B&2 (B_{a=1}^N $B&V (B(a) $B&F (B_{amodN}(s) ( $BC"$7 (B, $B&V": (BDC(N),s $B": (BC) $B$r<($; (BKyokoYoshida <kyokoyoshida123@gmail.com>
34412011/06/27Re: $B&F (B(s),DL(s, $B&V (B),_{amodN(s)}, $B&F (B(s,x) $B$NJ#AGJ?LL>e$G$N@5B'@-!&M-M}7?@-!&2r@O@\B32DG=@-$N>ZL@ (BKyokoYoshida <kyokoyoshida123@gmail.com>
34402011/06/26Re: $B&F (B(s),DL(s, $B&V (B),_{amodN(s)}, $B&F (B(s,x) $B$NJ#AGJ?LL>e$G$N@5B'@-!&M-M}7?@-!&2r@O@\B32DG=@-$N>ZL@ (BKyokoYoshida <kyokoyoshida123@gmail.com>
34392011/06/23Re: Dirichlet指標の群での定義についてchiaki@kit.ac.jp (Tsukamoto Chiaki)
34382011/06/23Re: ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
34372011/06/23Re: Bernoulli数,∀n∈Nに対してB_{2n+1}=0となる事の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34362011/06/23Re: Bernoulli多項式,B_n(0)=B_nの証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34352011/06/23Re: Dirichlet $B;XI8$N72$G$NDj5A$K$D$$$F (BKyokoYoshida <kyokoyoshida123@gmail.com>
34342011/06/23Re: Dirichlet $B;XI8$N72$G$NDj5A$K$D$$$F (BKyokoYoshida <kyokoyoshida123@gmail.com>
34332011/06/23Re: $B&F (B(1-r,x)=-rB_r(x) (where x $B": (BC) $B$H&F (B_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N) $B$r<($; (BKyokoYoshida <kyokoyoshida123@gmail.com>
34322011/06/23Re: Bernoulli $B?t (B, $B"O (Bn $B": (BN $B$KBP$7$F (BB_{2n+1}=0 $B$H$J$k;v$N>ZL@ (BKyokoYoshida <kyokoyoshida123@gmail.com>
34312011/06/23Re: Bernoulli $B?t (B, $B"O (Bn $B": (BN $B$KBP$7$F (BB_{2n+1}=0 $B$H$J$k;v$N>ZL@ (BKyokoYoshida <kyokoyoshida123@gmail.com>
34302011/06/23Re: Bernoulli $BB?9`<0 (B,B_n(0)=B_n $B$N>ZL@ (BKyokoYoshida <kyokoyoshida123@gmail.com>
34292011/06/22Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34282011/06/22Re: L(s, $B&V (B) $B$NJ#AGJ?LLA4BN$X$NDj5A$N3HD%$K$D$$$F (BKyokoYoshida <kyokoyoshida123@gmail.com>
34272011/06/22Re: $B&F (B(s),DL(s, $B&V (B),_{amodN(s)}, $B&F (B(s,x) $B$NJ#AGJ?LL>e$G$N@5B'@-!&M-M}7?@-!&2r@O@\B32DG=@-$N>ZL@ (BKyokoYoshida <kyokoyoshida123@gmail.com>
34262011/06/21Re: L(s,χ)の複素平面全体への定義の拡張についてchiaki@kit.ac.jp (Tsukamoto Chiaki)
34252011/06/21Re: L(s,χ)=Σ_{a=1}^N χ(a)ζ_{amodN}(s) (但し,χ∈DC(N),s∈C)を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
34242011/06/21Re: Dirichlet指標の群での定義について
↑ リクエストされた記事
chiaki@kit.ac.jp (Tsukamoto Chiaki)
34232011/06/21Re: L(s, $B&V (B) $B$NJ#AGJ?LLA4BN$X$NDj5A$N3HD%$K$D$$$F (BKyokoYoshida <kyokoyoshida123@gmail.com>
34222011/06/21Re: L(s, $B&V (B)= $B&2 (B_{a=1}^N $B&V (B(a) $B&F (B_{amodN}(s) ( $BC"$7 (B, $B&V": (BDC(N),s $B": (BC) $B$r<($; (BKyokoYoshida <kyokoyoshida123@gmail.com>
34212011/06/21Dirichlet指標の群での定義についてKyokoYoshida <kyokoyoshida123@gmail.com>
34202011/06/20Re: L(s,χ)の複素平面全体への定義の拡張についてchiaki@kit.ac.jp (Tsukamoto Chiaki)
34192011/06/20Re: L(s,χ)=Σ_{a=1}^N χ(a)ζ_{amodN}(s) (但し,χ∈DC(N),s∈C)を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
34182011/06/20Re: ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
34172011/06/20Re: Bernoulli多項式,B_n(0)=B_nの証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34162011/06/20Re: Bernoulli数,∀n∈Nに対してB_{2n+1}=0となる事の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34152011/06/20Re: ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34142011/06/20Re: L(s, $B&V (B) $B$NJ#AGJ?LLA4BN$X$NDj5A$N3HD%$K$D$$$F (BKyokoYoshida <kyokoyoshida123@gmail.com>
34132011/06/20Re: L(s, $B&V (B)= $B&2 (B_{a=1}^N $B&V (B(a) $B&F (B_{amodN}(s) ( $BC"$7 (B, $B&V": (BDC(N),s $B": (BC) $B$r<($; (BKyokoYoshida <kyokoyoshida123@gmail.com>
34122011/06/19ζ(1-r,x)=-rB_r(x) (where x∈C)とζ_{amodN}(1-r)=-1/r N^{r-1}B_r(a/N)を示せKyokoYoshida <kyokoyoshida123@gmail.com>
34112011/06/19Re: Bernoulli数,∀n∈Nに対してB_{2n+1}=0となる事の証明KyokoYoshida <kyokoyoshida123@gmail.com>
34102011/06/19Bernoulli多項式,B_n(0)=B_nの証明KyokoYoshida <kyokoyoshida123@gmail.com>
34092011/06/19Bernoulli数,∀n∈Nに対してB_{2n+1}=0となる事の証明KyokoYoshida <kyokoyoshida123@gmail.com>
34082011/06/19ζ(s),DL(s,χ),_{amodN(s)},ζ(s,x)の複素平面上での正則性・有理型性・解析接続可能性の証明KyokoYoshida <kyokoyoshida123@gmail.com>
34072011/06/18Re: L(r, $B&V (B)=1/(r-1)! $B!& (B(-2 $B&P (Bi/N)^r $B!& (B1/2 $B&2 (B_{a $B": (BZ_N^ $B!_ (B} $B&V (B(a)h_r( $B&F (B_N^a) $B$N>ZL@ (BKyokoYoshida <kyokoyoshida123@gmail.com>
34062011/06/18Re: L(s,χ)の複素平面全体への定義の拡張についてchiaki@kit.ac.jp (Tsukamoto Chiaki)
34052011/06/18Re: L(s,χ)=Σ_{a=1}^N χ(a)ζ_{amodN}(s) (但し,χ∈DC(N),s∈C)を示せchiaki@kit.ac.jp (Tsukamoto Chiaki)
34042011/06/18Re: L(s, $B&V (B) $B$NJ#AGJ?LLA4BN$X$NDj5A$N3HD%$K$D$$$F (BKyokoYoshida <kyokoyoshida123@gmail.com>
34032011/06/18Re: L(s, $B&V (B)= $B&2 (B_{a=1}^N $B&V (B(a) $B&F (B_{amodN}(s) ( $BC"$7 (B, $B&V": (BDC(N),s $B": (BC) $B$r<($; (BKyokoYoshida <kyokoyoshida123@gmail.com>
34022011/06/17Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)
34012011/06/17Re: L(r, $B&V (B)=1/(r-1)! $B!& (B(-2 $B&P (Bi/N)^r $B!& (B1/2 $B&2 (B_{a $B": (BZ_N^ $B!_ (B} $B&V (B(a)h_r( $B&F (B_N^a) $B$N>ZL@ (BKyokoYoshida <kyokoyoshida123@gmail.com>
34002011/06/16Re: L(r,χ)=1/(r-1)!・(-2πi/N)^r・1/2Σ_{a∈Z_N^×}χ(a)h_r(ζ_N^a)の証明chiaki@kit.ac.jp (Tsukamoto Chiaki)

Fnews-list 1.9(20180406) -- by Mizuno, MWE <mwe@ccsf.jp>
GnuPG Key ID = ECC8A735
GnuPG Key fingerprint = 9BE6 B9E9 55A5 A499 CD51 946E 9BDC 7870 ECC8 A735