2422 | 2009/02/03 | Re: Borel測度が有限半径球で有限ならμ(O\E)<ε,μ(E\F)<εでF⊂E⊂Oなる,開閉集合OとFが取れる | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2421 | 2009/02/03 | Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2420 | 2009/02/03 | Borel測度が有限半径球で有限ならμ(O\E)<ε,μ(E\F)<εでF⊂E⊂Oなる,開閉集合OとFが取れる | kyokoyoshida123@gmail.com |
2419 | 2009/02/03 | Re: f(x,y) $B$r (BR $B!_ (BR $B$G%k%Y!<%02DB,$JHsIi4X?t$H$9$k!#<!$N??56$rH=Dj$;$h (B | kyokoyoshida123@gmail.com |
2418 | 2009/02/02 | Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2417 | 2009/02/02 | Re: ∫_(R^d)|f(x)|dx=∫[0..∞]m(E_α)dα (但し,mはルベーグ測度)となる事示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2416 | 2009/02/02 | Re: f(x,y) $B$r (BR $B!_ (BR $B$G%k%Y!<%02DB,$JHsIi4X?t$H$9$k!#<!$N??56$rH=Dj$;$h (B | kyokoyoshida123@gmail.com |
2415 | 2009/02/02 | Re: $B"i (B_(R^d)|f(x)|dx= $B"i (B[0.. $B!g (B]m(E_ $B&A (B)d $B&A (B ( $BC"$7 (B,m $B$O%k%Y!<%0B,EY (B) $B$H$J$k;v<($; (B | kyokoyoshida123@gmail.com |
2414 | 2009/01/31 | Re: 任意の4点に接する曲面 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2413 | 2009/01/31 | Re: EがCaratheodory可測⇔EはLebesgue可測 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2411 | 2009/01/31 | Re: 任意の4点に接する曲面 | tanaq <tanaq@ca2.so-net.ne.jp> |
2410 | 2009/01/30 | Re: 任意の4点に接する曲面 | tesigana@diary.ocn.ne.jp (tesigana@diary.ocn.ne.jp) |
2409 | 2009/01/30 | Re: 任意の4点に接する曲面 | kono@ie.u-ryukyu.ac.jp (Shinji KONO) |
2408 | 2009/01/30 | Re: 任意の4点に接する曲面 | toda@lbm.go.jp |
2407 | 2009/01/30 | Re: 任意の4点に接する曲面 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2406 | 2009/01/29 | 任意の4点に接する曲面 | tanaq <tanaq@ca2.so-net.ne.jp> |
2405 | 2009/01/28 | Re: EがCaratheodory可測⇔EはLebesgue可測 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2404 | 2009/01/28 | Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2403 | 2009/01/28 | Re: ∫_(R^d)|f(x)|dx=∫[0..∞]m(E_α)dα (但し,mはルベーグ測度)となる事示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2402 | 2009/01/28 | Re: E $B$, (BCaratheodory $B2DB,"N (BE $B$O (BLebesgue $B2DB, (B | kyokoyoshida123@gmail.com |
2401 | 2009/01/27 | Re: EがCaratheodory可測⇔EはLebesgue可測 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2400 | 2009/01/27 | Re: EがCaratheodory可測⇔EはLebesgue可測 | kyokoyoshida123@gmail.com |
2399 | 2009/01/26 | Re: f(x,y) $B$r (BR $B!_ (BR $B$G%k%Y!<%02DB,$JHsIi4X?t$H$9$k!#<!$N??56$rH=Dj$;$h (B | kyokoyoshida123@gmail.com |
2398 | 2009/01/25 | EがCaratheodory可測⇔EはLebesgue可測 | kyokoyoshida123@gmail.com |
2397 | 2009/01/25 | Re: $B"i (B_(R^d)|f(x)|dx= $B"i (B[0.. $B!g (B]m(E_ $B&A (B)d $B&A (B ( $BC"$7 (B,m $B$O%k%Y!<%0B,EY (B) $B$H$J$k;v<($; (B | kyokoyoshida123@gmail.com |
2396 | 2009/01/20 | Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよ ↑ リクエストされた記事 | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2395 | 2009/01/20 | Re: ∫_(R^d)|f(x)|dx=∫[0..∞]m(E_α)dα (但し,mはルベーグ測度)となる事示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2394 | 2009/01/19 | Re: f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよ | kyokoyoshida123@gmail.com |
2393 | 2009/01/19 | f(x,y)をR×Rでルベーグ可測な非負関数とする。次の真偽を判定せよ | kyokoyoshida123@gmail.com |
2392 | 2009/01/19 | ∫_(R^d)|f(x)|dx=∫[0..∞]m(E_α)dα (但し,mはルベーグ測度)となる事示せ | kyokoyoshida123@gmail.com |
2391 | 2009/01/14 | 物理の本 - Fun with physics on free 1600 pages | Christoph Schiller <chri_schiller@yahoo.com> |
2390 | 2008/12/29 | Re: P_A $B$r:G>.B?9`<0$H$7 (B,P_A(t)= $B&0 (B[i=1..r](t- $B&A (B_i)^m_i $B$G&A (B_1, $B&A (B_2, $B!D (B, $B&A (B_r $B$,Aj0[$J$k$J$i (BP_(f(A)) $B$O<!?t (B1 $B$N0x?t$GI=$5$l$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2389 | 2008/12/29 | Re: f:V(+)V( $B!_ (B)V* $B"* (BF $B$r (Bf((v+v')( $B!_ (B)g)=g(v)+g(v') $B$GDj5A$9$k (B.f $B$,@~7A<LA|$G$"$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2388 | 2008/12/25 | Re: f:V(+)V(×)V*→Fをf((v+v')(×)g)=g(v)+g(v')で定義する.fが線形写像である事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2387 | 2008/12/24 | Re: f:V(+)V( $B!_ (B)V* $B"* (BF $B$r (Bf((v+v')( $B!_ (B)g)=g(v)+g(v') $B$GDj5A$9$k (B.f $B$,@~7A<LA|$G$"$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2386 | 2008/12/21 | Re: P_Aを最小多項式とし,P_A(t)=Π[i=1..r](t-α_i)^m_iでα_1,α_2,…,α_rが相異なるならP_(f(A))は次数1の因数で表される事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2385 | 2008/12/20 | Re: P_A $B$r:G>.B?9`<0$H$7 (B,P_A(t)= $B&0 (B[i=1..r](t- $B&A (B_i)^m_i $B$G&A (B_1, $B&A (B_2, $B!D (B, $B&A (B_r $B$,Aj0[$J$k$J$i (BP_(f(A)) $B$O<!?t (B1 $B$N0x?t$GI=$5$l$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2384 | 2008/12/14 | Re: ( $BB3 (B)( $B&8 (B, $B&2 (B, $B&L (B) $B$,&RM-8BB,EY6u4V$G (B1 $B!e (Bp< $B!g$G (Bf_k $B$O (Bf $B$K (BL^p $B<}B+$G"O (Bx $B":&8 (B,lim[k $B"*!g (B]g_k(x)=g(x) $B$G"O (Bk, $B!B (Bg_k $B!B (B_ $B!g!e (BM $B$J$i (Bf_kg_k $B$O (Bfg $B$K (BL^p $B<}B+$9$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2383 | 2008/12/12 | Re: f:V(+)V(×)V*→Fをf((v+v')(×)g)=g(v)+g(v')で定義する.fが線形写像である事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2382 | 2008/12/12 | Re: P_Aを最小多項式とし,P_A(t)=Π[i=1..r](t-α_i)^m_iでα_1,α_2,…,α_rが相異なるならP_(f(A))は次数1の因数で表される事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2381 | 2008/12/12 | Re: (続)(Ω,Σ,μ)がσ有限測度空間で1≦p<∞でf_kはfにL^p収束で∀x∈Ω,lim[k→∞]g_k(x)=g(x)で∀k,‖g_k‖_∞≦Mならf_kg_kはfgにL^p収束する事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2380 | 2008/12/12 | Re: f:V(+)V( $B!_ (B)V* $B"* (BF $B$r (Bf((v+v')( $B!_ (B)g)=g(v)+g(v') $B$GDj5A$9$k (B.f $B$,@~7A<LA|$G$"$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2379 | 2008/12/12 | Re: P_A $B$r:G>.B?9`<0$H$7 (B,P_A(t)= $B&0 (B[i=1..r](t- $B&A (B_i)^m_i $B$G&A (B_1, $B&A (B_2, $B!D (B, $B&A (B_r $B$,Aj0[$J$k$J$i (BP_(f(A)) $B$O<!?t (B1 $B$N0x?t$GI=$5$l$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2378 | 2008/12/12 | Re: ( $BB3 (B)( $B&8 (B, $B&2 (B, $B&L (B) $B$,&RM-8BB,EY6u4V$G (B1 $B!e (Bp< $B!g$G (Bf_k $B$O (Bf $B$K (BL^p $B<}B+$G"O (Bx $B":&8 (B,lim[k $B"*!g (B]g_k(x)=g(x) $B$G"O (Bk, $B!B (Bg_k $B!B (B_ $B!g!e (BM $B$J$i (Bf_kg_k $B$O (Bfg $B$K (BL^p $B<}B+$9$k;v$r<($; (B | kyokoyoshida123@gmail.com |
2377 | 2008/12/11 | Re: (続)(Ω,Σ,μ)がσ有限測度空間で1≦p<∞でf_kはfにL^p収束で∀x∈Ω,lim[k→∞]g_k(x)=g(x)で∀k,‖g_k‖_∞≦Mならf_kg_kはfgにL^p収束する事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2376 | 2008/12/11 | (続)(Ω,Σ,μ)がσ有限測度空間で1≦p<∞でf_kはfにL^p収束で∀x∈Ω,lim[k→∞]g_k(x)=g(x)で∀k,‖g_k‖_∞≦Mならf_kg_kはfgにL^p収束する事を示せ | kyokoyoshida123@gmail.com |
2375 | 2008/12/11 | Re: P_Aを最小多項式とし,P_A(t)=Π[i=1..r](t-α_i)^m_iでα_1,α_2,…,α_rが相異なるならP_(f(A))は次数1の因数で表される事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2374 | 2008/12/11 | Re: f:V(+)V(×)V*→Fをf((v+v')(×)g)=g(v)+g(v')で定義する.fが線形写像である事を示せ | chiaki@kit.ac.jp (Tsukamoto Chiaki) |
2373 | 2008/12/10 | P_Aを最小多項式とし,P_A(t)=Π[i=1..r](t-α_i)^m_iでα_1,α_2,…,α_rが相異なるならP_(f(A))は次数1の因数で表される事を示せ | kyokoyoshida123@gmail.com |
2372 | 2008/12/10 | Re: f:V(+)V( $B!_ (B)V* $B"* (BF $B$r (Bf((v+v')( $B!_ (B)g)=g(v)+g(v') $B$GDj5A$9$k (B.f $B$,@~7A<LA|$G$"$k;v$r<($; (B | kyokoyoshida123@gmail.com |