| From(投稿者): | rinpikapika234 <mukt12143@hera.eonet.ne.jp> |
|---|---|
| Newsgroups(投稿グループ): | fj.sci.math |
| Subject(見出し): | CONTINUUS MAPS ARE HOMOTOPIC TO LIPSCHITZ MAP ? |
| Date(投稿日時): | Wed, 5 Dec 2007 02:25:28 -0800 (PST) |
| Organization(所属): | http://groups.google.com |
| Message-ID(記事識別符号): | (G) <fc5c859e-6d00-4723-8969-10494c4f24c9@d27g2000prf.googlegroups.com> |
S^n is n-dimensional unit sphere of (n+1)-dimensional Eculidian space. X is arbitary metric space. f : S^n -----> X continuus. Is there exist lipschitz map g : S^n -----> X such that g is homotopic to f ? If X is manifold, this is easy i.e. C^1 map is Lipschitz.