Path: news.ccsf.jp!shiino.jp!news.heimat.gr.jp!news.unit0.net!feeder.erje.net!eternal-september.org!feeder.eternal-september.org!.POSTED!not-for-mail From: chiaki@kit.ac.jp (Tsukamoto Chiaki) Newsgroups: fj.sci.math Subject: Re: 不等式Σ_{n=1}^m |1/n^z|≦Σ_{n=1}^m |1/n^Re(z)|の証明 Date: Mon, 31 Jan 2011 11:31:56 GMT Organization: Kyoto Institute of Technology Lines: 24 Message-ID: <110131203156.M0216388@ras2.kit.ac.jp> References: <3bdc4e67-b09a-4d3a-92db-553594285cdb@d16g2000yqd.googlegroups.com> Mime-Version: 1.0 Content-Type: text/plain; charset=iso-2022-jp Injection-Info: mx01.eternal-september.org; posting-host="Pfj2j4fxHl4163tIz9+1ng"; logging-data="29313"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+L69VTDaktoyDvSRFwVcVK" X-Newsreader: mnews [version 1.22PL7(UNI)] 2008-02/02(Sat) Cancel-Lock: sha1:UBVB0xhXJGEvk7+irHRyn9EntbI= Xref: news.ccsf.jp fj.sci.math:3246 工繊大の塚本と申します. In article <3bdc4e67-b09a-4d3a-92db-553594285cdb@d16g2000yqd.googlegroups.com> KyokoYoshida writes: > m,nを自然数,zを複素数とする時,次の不等式が成立する事を示せ。 > > Σ_{n=1}^m |1/n^z|≦Σ_{n=1}^m |1/n^Re(z)| > > はどのようにして示せますでしょうか。 |n^z| = |\exp((\log n) z)| = |\exp((\log n) Re(z) + i (\log n) Im(z))| = |\exp((\log n) Re(z)) \exp(i (\log n) Im(z))| = |\exp((\log n) Re(z))| |\exp(i (\log n) Im(z))| = |n^{Re(z)}| |\cos((\log n) Im(z)) + i \sin((\log n) Im(z))| = n^{Re(z)} # \exp(i \theta) が絶対値 1 の複素数を表すことは宜しいか. \sum_{n=1}^m |1/n^z| = \sum_{n=1}^m 1/n^{Re(z)} となります. -- 塚本千秋@数理・自然部門.基盤科学系.京都工芸繊維大学 Tsukamoto, C. : chiaki@kit.ac.jp