Path: news.ccsf.jp!tomockey.ddo.jp!border1.nntp.dca.giganews.com!border2.nntp.dca.giganews.com!nntp.giganews.com!news1.optus.net.au!optus!newsfeeder.syd.optusnet.com.au!news.optusnet.com.au!not-for-mail From: "Peter Webb" Newsgroups: alt.math.recreational,japan.sci.math,sci.math References: In-Reply-To: Subject: Re: Solution to a Pentic Date: Sat, 5 Dec 2009 18:07:00 +1100 MIME-Version: 1.0 Content-Type: text/plain; format=flowed; charset="iso-8859-1"; reply-type=response Content-Transfer-Encoding: 7bit X-Priority: 3 X-MSMail-Priority: Normal X-Newsreader: Microsoft Windows Mail 6.0.6002.18005 X-MimeOLE: Produced By Microsoft MimeOLE V6.0.6002.18005 Lines: 27 Message-ID: <4b1a06c1$0$3075$afc38c87@news.optusnet.com.au> NNTP-Posting-Host: 122.106.197.60 X-Trace: 1259996865 3075 122.106.197.60 X-Original-Bytes: 1504 Xref: news.ccsf.jp japan.sci.math:251 "Jon" wrote in message news:Ns6dne_eNZ5zdYTWnZ2dnUVZ_oydnZ2d@earthlink.com... > Solution to a pentic: > > http://jons-math.bravehost.com/penticsoln.html > > This shows the steps to derive the formula below. > > The root to ax^5+bx+c=0 is, > > x = { -c*({a^2+b^2}^(1/2)+a)/(b^2+a*{a^2+b^2}^(1/2)) }^(1/5) > > Using this formula, the roots to, > > x^5+x-34=0 x=1.888 should be 2 > 32x^5+4x-3=0 x=0.623 should be 1/2 > x^5+x-0.10001 x=0.5887 should be 1/10 > > > So the formula must be wrong. Don't believe everything you read on the internet.