Path: news.ccsf.jp!tomockey.ddo.jp!border1.nntp.dca.giganews.com!nntp.giganews.com!newsfeed00.sul.t-online.de!t-online.de!feeder.news-service.com!news.motzarella.org!motzarella.org!news.motzarella.org!chiaki From: chiaki@kit.ac.jp (Tsukamoto Chiaki) Newsgroups: fj.sci.math Subject: Re: 4$BCJ3,$G%k%Y!<%0@QJ,$r9=C[$;$h!#(B Date: Mon, 16 Feb 2009 01:03:58 +0900 Organization: Kyoto Institute of Technology Lines: 112 Message-ID: <090216010358.M0130194@cs1.kit.ac.jp> References: Mime-Version: 1.0 Content-Type: text/plain; charset=iso-2022-jp X-Trace: news.eternal-september.org U2FsdGVkX1/z/XXw3oeLvNjnOmf6cQDDeQtLyJ37aJ3Vnl4VPUy66lBCrh5byIa7JkkJPYv5imNCdyTTWgZz95RmqA7gknnkWNfEyOewBhnGC+bMHzoUh3FzljZskf05nBbJaKA8/j4= X-Complaints-To: Please send complaints to abuse@motzarella.org with full headers NNTP-Posting-Date: Sun, 15 Feb 2009 16:03:59 +0000 (UTC) X-Newsreader: mnews [version 1.22PL5] 2001-02/07(Wed) X-Auth-Sender: U2FsdGVkX18GSdoHWMsavuR4LdSJLWh2ZaxOHsPnnoU= Cancel-Lock: sha1:kFzvzHQRwd34MWckLAgye7FXIFE= Xref: news.ccsf.jp fj.sci.math:2444 $B9)A!Bg$NDMK\$H?=$7$^$9(B. In article kyokoyoshida123 writes: > $B%W%j%s%H$+$i$NLdBj$G$9!#%k%Y!<%0@QJ,$NDj5A$r9=C[$7$F$_$;$h!#(B > $B$H$$$&Ld0U$G$7$g$&$+!#(B > > Show that the four-step approach to the construction of the Lebesgue > integral carries over to the situation of a $B&R(B-finite measure space. $B%k%Y!<%0@QJ,$N;MCJ3,$G$N9=@.K!$,0lHL$N(B $B&R(B-$BM-8BB,EY6u4V>e$N(B $B@QJ,$N9=@.$K$b0\9T$G$-$k$3$H$r<($;(B, $B$H$$$&$o$1$G$9(B. # $B%k%Y!<%0@QJ,$H$$$&$N$OI,$:$7$bF3F~$K;MCJ3,$,I,MW$G$O(B # $B$"$j$^$;$s$+$i(B, $B5.J}$N=,$C$F$$$k(B course $B$NFbMF$K>H$i(B # $B$7$F$*9M$(2<$5$$(B. > $B2<5-$ON,2r(B(?)$B$i$7$$$N$G$9$,$I$N$h$&$KEz$($l$P$$$$$N$G$7$g$&$+(B? > $B-!$G$O&V(B_E_k$B$OFC@-4X?t$@$H;W$$$^$9!#(B > $B$=$7$FC14X?t&W$N(Bcanomical form($BI8=`7A(B?)$B$,0l0UE*$G$"$k;v$N $B$G$bC14X?t$N@QJ,$NDj5A$NA0$KFC@-4X?t$N@QJ,$NDj5A$r$7$J$1$l$P(B > $B@.$i$J$$$N$G$O$J$$$+$H;W$$$^$9!#!#!#(B $BFC@-4X?t$H$$$&$N$OC14X?t$NFCJL$J>l9g$G$9$+$i(B, $BFC$KJL07$$$9$kI,MW$O$J$$$G$7$g$&(B. $B$J$*(B, $B$3$3$G$O(B E_k $B$OB,EYM-8B$G(B, c_k $B$bM-8BCM$N(B $B>l9g$,A[Dj$5$l$F$$$k$G$7$g$&(B. > $B-"$OC14X?t$G$J$$0lHL$N4X?t&W$N%k%Y!<%0@QJ,$NDj5A$@$H;W$$$^$9!#(B $B&W(B $B$G$O$J$/(B, f $B$G$9$M(B. f $B$,(B, $BM-3&$G(B supp f $B$,M-8BB,EY$NHsIiCM2DB,4X?t$N>l9g$G$9(B. > $BHsIi4X?t$J$iC14X?tNs$,:N$l$k$H8@$&0UL#$G$7$g$&$+(B? f $B$K<}B+$9$kC1D4A}2C$G(B f $B$GM^$($l$i$l$F$$$kC14X?tNs$NB8:_$O(B $B>ZL@$7$F$*$/I,MW$,$"$j$^$9$M(B. $B$^$"(B, $B2?2s$+=R$Y$^$7$?(B. > supp(f)$B$NDj5A$H$=$l$NB,EY$,M-8B$H $B$3$l$,$I$&$$$&0UL#$r;}$D$N$G$7$g$&$+(B? f $B$,(B, $BM-3&$G(B supp f $B$,M-8BB,EY$G$"$l$P(B, $B$=$N@QJ,$,(B $BM-8BCM$GDj$^$k$o$1$G$9(B. > $B$"$H(B,A_$B&E$N0UL#$,$h$/J,$+$j$^$;$s!#(B $B2?$+ $B-#$O2?$J$N$G$7$g$&$+!#(B > $B0lHL$N4X?t(Bf$B$N-"0J30$G$N%k%Y!<%0@QJ,$NDj5A$N;EJ}$G$7$g$&$+(B? f $B$,(B bounded $B$G$J$+$C$?$j(B, supp f $B$,M-8BB,EY$G$J$+$C$?$j(B $B$9$k>l9g$G$9$M(B. $B$=$l$N@QJ,$r(B bounded $B$G(B support $B$,M-8BB,EY(B $B$N(B g $B$N@QJ,$rMQ$$$FDj5A$9$k$o$1$G$9(B. > $B-$$O@5Ii$4$A$c$^$<$K$J$C$?0lHL$N4X?t$N%k%Y!<%0@QJ,$NDj5A$@$H;W$$$^$9!#B?J,!#(B $B$3$l$OI8=`E*$G$9$M(B. > $B$"$H(B,$B&RM-8B$H8@$&>r7o$O2?=h$GI,MW$J$N$G$7$g$&$+(B? $B&R(B-$BM-8B$G$J$$$H(B, supp g_n $B$,M-8BB,EY$G$"$k$h$&$JM-3&$J(B $BHsIiCM2DB,4X?t(B g_n $B!e(B f $B$G(B lim_{n$B"*!g(B} g_n = f $B$H$J$k$b$N(B $B$NZL@$,(B $BLdBj$K$J$C$?H&$G$9(B. sup_{0$B!e(Bg$B!e(Bf} $B"i(B_X g d$B&L(B $B$GDj5A$9$l$P(B, $B&R(B-$BM-8B$G$J$/$F$bDj5A$O=PMh$k$o$1$G$9$,(B. $B0J2<$OBgJ,85$H$O0c$C$F$$$k$h$&$K8+ (X,M,$B&L(B) > $B-!(B simple function $B&W(B=$B&2(B[k=1..N]a_k$B&V(B_E_k (a_k$B":(B,M$B";(BE_k:disjoint). > {c_1,c_2,$B!D(B,c_m} are the values of $B&W(B > $B&W(B~=$B&2(B[k=1..m]c_k$B&V(B_{x;$B&W(B(x)=c_k} > $B&W(B=$B&2(B[k=1..m]c_k$B&V(B_F_k > canonical form. > $B"i&W(Bd$B&L(B=$B&2(B[k=1..n]c_k$B&L(B(F_k) > $B&W(B,$B&W(B~ simple function > > $B-"(B bounded nonnegative function with support of finite measure. > supp(f)={x$B":(BX;f(x)$B!b(B0},$B&L(B(supp(f))<$B!g(B. > $B"P(Bsequence ($B&W(B_m)_{m$B":(BN} of a simple function such that $B&W",(Bf. > Want to show lim[m$B"*!g(B]$B"i&W(B_m exists > |$B"i(B_X $B&W(B_m d$B&L(B-$B"i(B_X $B&W(B_n d$B&L(B|=|$B"i(B_X ($B&W(B_m-$B&W(B_n) d$B&L(B|$B!e"i(B_X |$B&W(B_m-$B&W(B_n| d$B&L(B > =$B"i(B_A_$B&E(B $B&W(B_m d$B&L(B+$B"i(B_{X-A_$B&E(B}|$B&W(B_m-$B&W(B_n|d$B&L!e&E&L(B(X)+C$B&L(B(X$B!@(BA_$B&E(B) > $B!e&E&L(B(A_$B&E(B)+$B"i(B_{X$B!@(BA_$B&E(B} |$B&W(B_m-$B&W(B_n|d$B&L!e&E&L(B(X)+$B"i(B_{X$B!@(BA_$B&E(B} |$B&W(B_m-$B&W(B_n|d$B&L(B > $B!e&E&L(B(X)+C$B&E(B > ($B"h(Bf is bounded f$B!e"P(BC/2. $B&W(B_m$B!e(Bf$B!e(BC/2. > |$B&W(B_m-$B&W(B_n|$B!e(B|$B&W(B_m|+|$B&W(B_n|=$B&W(B_m+$B&W(B_n$B!e(BC) > $B"i(Bfd$B&L(B=lim[n$B"*!g(B]$B"i&W(B_m d$B&L(B > > $B-#(B f is nonnegative $B"i(Bfd$B&L(B=sup_{0$B!e(Bg$B!e(Bf} $B"i(Bgd$B&L(B g are function from $B-"(B. > g:measurable > > $B-$(B f arbitrary $B"i(B|f|d$B&L(B<$B!g(B, f^+(x)=max{f(x),0}$B!f(B0. > f^-(x)min{-f(x),0}$B!f(B0 > $B"i(Bfd$B&L(B:=$B"i(Bf^+d$B&L(B-$B"i(Bf^-d$B&L(B -- $BDMK\@i=)(B@$B1~MQ?t3X(B.$B4pHW2J3XItLg(B.$B5~ET9)7]A!0]Bg3X(B Tsukamoto, C. : chiaki@kit.ac.jp